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Abstract 
The United States Geological Survey has been researching generalization approaches to enable 
multiple-scale display and delivery of geographic data. This paper presents automated methods to 
prune network and polygon features of the United States high-resolution National Hydrography 
Dataset (NHD) to lower resolutions. Feature-pruning rules, data enrichment, and partitioning are 
derived from knowledge of surface water, the NHD model, and associated feature specification 
standards. Relative prominence of network features is estimated from upstream drainage area 
(UDA). Network and polygon features are pruned by UDA and NHD reach code to achieve a 
drainage density appropriate for any less detailed map scale. Data partitioning maintains local 
drainage density variations that characterize the terrain. For demonstration, a 48-subbasin area of 
1:24 000-scale NHD was pruned to 1:100 000-scale (100K) and compared to a benchmark, the 
100K NHD. The coefficient of line correspondence (CLC) is used to evaluate how well pruned 
network features match the benchmark network. CLC values of 0.82 and 0.77 result from pruning 
with and without partitioning, respectively. The number of polygons that remain after pruning is 
about seven times that of the benchmark, but the area covered by the polygons that remain after 
pruning is only about 10 percent greater than the area covered by benchmark polygons. 
 
Keywords: automated generalization, hydrographic network, National Hydrography Dataset, 
directed graph, catchment. 
 
1.0 Introduction 
A principal objective of cartographic generalization is reduction of content and detail of geospatial 
data in a manner that appropriately portrays remaining features at smaller scales. Technology and 
research have advanced the capacity for cartographic and geospatial database generalization 
through systems and tools that automate processes using modern database designs, knowledge 
bases, and artificially intelligent algorithms. Much of the recent (2009) progress is presented or 
reviewed in the recently published book by the International Cartographic Association [1]. 
Generalization tools are available that perform specific operations, such as line simplification or 
smoothing, or polygon collapse or aggregation [2]. Some software systems sequence generalization 
operators into processes that are suitable for specific data types, such as road networks [3]; 
however, further development and research are needed to tailor intelligent automated generalization 
processes that are suitable for primary geospatial data themes operating comprehensively for large 
regions with diverse conditions, such as the United States. 
 
The U.S. Geological Survey (USGS) vision of The National Map is to ensure that “current, 
complete, consistent, and accurate” geographic base information is readily available through a 
system of web-based interfaces [4]. With assistance from federal, state, and local data stewards, the 
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USGS is developing and maintaining eight primary geospatial data themes: transportation, 
hydrography, boundaries, structures, elevation, land cover, orthographic images, and geographic 
names [5]. In 2005, the USGS Center of Excellence for Geospatial Information Science (CEGIS) 
began this generalization project to “research and develop automated methods for generalization to 
support multiple-scale display and delivery of The National Map and other USGS geographic data” 
[6]. This paper describes ongoing CEGIS research into automated generalization that is focused on 
the primary hydrography theme of The National Map, namely the National Hydrography Dataset 
(NHD). 
 
The NHD is a comprehensive vector database representing surface-water features of the United 
States. NHD features have been compiled from several scales and types of USGS digital data and 
other vector hydrographic data sources. Synoptic coverage is available at two primary levels of 
detail--the high-resolution (originally compiled from 1:24 000-scale (24K) source data, and 1:63 
360-scale in Alaska) and 1:100 000-scale (100K) layers. Additional resolutions are needed to 
support the USGS automated cartographic mapping and web services. In addition, through ongoing 
state-level densification efforts, the high-resolution layer is becoming a multi-scale layer of the 
most accurate hydrographic data for the country that, in places, does not provide a consistent scale 
representation adequate for cartographic mapping.  
 
The problem is further complicated by the range of surface hydrographic conditions (wet and dry 
years) and various map compilation standards that existed during the many years that USGS 
topographic map sheets were compiled, dating back to the 1940’s [7].The primary source material 
for both resolutions of the NHD was the USGS 24K topographic map series. Although standard 
topographic instructions were available, generalization of features during field collection and 
subsequently by cartographers to produce the 24K and 100K maps was a difficult task, and the 
results were not always consistent. 
 
This project develops and tests an automated approach to prune the high-resolution NHD to a 
consistent level of detail, where needed, and to prune it to other levels of detail that are appropriate 
for mapping at smaller scales. Pruning is used in this text because it typically refers to the removal 
of less prominent features, inherently involving a prominence rating, which better describes the 
approach than similar terms such as thinning, elimination, or selection. The pruning process also 
must retain topological and data model integrity so that pruned data will function with existing 
applications. Successful implementation of automated pruning will enhance the USGS NHD 
program through optimized database maintenance and automation of a fully integrated multiple 
representation database; both common goals of data generalization and multiple representation 
databases [1, 8, 9, 10]. 
 
With respect to this project, automated generalization has been divided into two primary 
development tasks—feature pruning and simplification. This article focuses on feature pruning. The 
next section describes the NHD database to provide perspective on the problem and explain the 
constraints applied in the selected pruning strategy. 
 
2.0 The NHD Database 
The NHD is stored in an ESRI geodatabase model format within an Oracle database. Features in 
each resolution are separated into five feature classes--NHDArea, NHDFlowline (flowline), 
NHDWaterbody (waterbody), NHDLine, and NHDPoint—each containing a subset of NHD feature 
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types represented with the same geometrical shape type. All polygonal features are stored in the 
waterbody and NHDArea features classes.  
 
The flow line feature class contains features of type artificial path, canal/ditch, coastline, connector, 
pipeline, and stream/river, which are each represented with a single-part polyline shape type. An 
artificial path represents a flow path through a polygonal water feature that is connected to other 
flowline features, and a connector represents a path where surface flow is known to exist, but was 
not included in the source material (fig. 1). The NHDArea and NHDWaterbody feature classes 
contain single-part polygon features of various types. All waterbody feature types may have 
artificial paths passing through them, whereas only three NHDArea types can have artificial paths 
passing through them. As of January 2008, the high-resolution NHD layer contained more than 27 
million features, nearly 20 million of which are flowline features. 
 
 

 
Figure 1: Artificial path, connector, and stream/river features over aerial photo. 

 
The NHD includes a set of surface-water reaches delineated on the vector data.  Each reach consists 
of a significant segment of surface water having similar hydrologic characteristics, such as a stretch 
of river between two confluences, a lake, or a pond [11].  A unique address, called a reach code, is 
assigned to each reach. All flowline features receive a reach code address, as well as all lake/pond 
and reservoir features of the waterbody feature class. Reach addresses and the associated linear 
referencing system enable the linking of ancillary data to specific features and locations on the 
NHD; consequently, reach codes are maintained by conflation to new feature representations when 
acquired [11]. Connected features of compatible feature type can share the same reach code. 
Likewise, a reach code on the flowline feature class may extend over several confluences because 
the reach code was conflated from a lower resolution layer.  
 
Flowline features in the NHD are oriented, where possible, in the direction of surface-water flow, 
and the direction is recorded in a feature attribute. Approximately 94 percent of all high-resolution 
flowline features have been oriented and assigned flow direction. The structure of the flowline 
feature class furnishes a drainage network representing water flow over the terrain, which may be 
referred to as a hydrographic network. Topological connectivity of the flowline network enables the 
formation of a directed graph [12, 13], which can be used for various analysis functions. 
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3.0 Methodology: Automated Pruning of the High-Resolution NHD 
Pruning, or the initial process of selecting source objects and attributes to be represented in a 
generalized dataset, is common in generalization strategies [1, 2, 14, 15]. In this paper, pruning the 
high-resolution NHD consists of eliminating relatively less prominent features, and it is completed 
in two steps: network pruning and polygon pruning. This paper only discusses processing and 
analysis of the flowline, waterbody, and NHDArea feature classes, which contain most of the NHD 
features. 
 
3.1  Network pruning 
High-resolution network pruning is completed for a partition, which refers to a watershed or part of 
a watershed. The first step of the pruning process removes over- or under-passing network features 
and features without flow direction. These features primarily consist of canal\ditch or pipeline 
types. The remaining network features in a partition are pruned until a predetermined drainage 
density is achieved, where drainage density is the ratio of the length of all network features in the 
partition to the area of the partition. Less prominent network features are identified and pruned 
based on the relative extent of land surface that flows into the network features.  
 
Before pruning, data enrichment, or preprocessing, assigns a catchment area and upstream drainage 
area (UDA) estimate to each network feature. Enriching a data layer to prepare it for automated 
generalization is common practice [3, 16, 17, 18]. The catchment for a network feature is the area of 
the watershed that drains into the feature. A rapid approach that sums the area of Thiessen polygons 
derived for evenly spaced points on each flowline is used to estimate a catchment area for each 
flowline feature (fig. 2) [19]. Subsequently, an augmented directed graph is used to assign UDA 
estimates to each flowline [20].  
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Figure 2: Three catchments labeled A, B, and C derived through Thiessen polygons for network 
features labeled a, b, and c, respectively.  

 - 4 -



Final submission of Computers, Environment and Urban Systems 33 (2009) 325–333 

The pruning process iteratively eliminates network features that drain a minimum UDA, which 
increases with each iteration until the desired density is achieved for an area. The augmented 
directed graph generates monotonically increasing values with downstream location on the network, 
which enable pruning without generating false breaks in the pruned network. At convergences, the 
augmented graph avoids multiple additions of upstream values, which would improperly magnify 
the prominence of features in braided areas. An additional constraint applied during network 
pruning is that complete reaches are extracted to maintain the integrity of the generalized dataset 
and any links to associated data. 
 
Selecting relative prominence of network features by UDA follows the same logic as the Pfafstetter 
system for topologically coding river basins and networks [21]. Others have assigned a perceived 
level of prominence to hydrographic network features for generalization [22]. Perceptual 
prominence levels assume mapped features are collected in a consistent manner, which cannot be 
assumed for the high-resolution layer of the NHD. Pruning NHD network features by UDA and 
reach code is similar to perceptual grouping or “stroke” building [3, 16, 22, 23], but with different 
emphasis. UDA is the most significant factor for estimating stream flow in the National Flood 
Frequency Program [24]; hence, UDA-based selection puts greater emphasis on the relative 
function of a feature rather than on perceived groupings. Assigning prominence by UDA is a 
feasible and perhaps better alternative for the NHD, although probably more costly to implement. 
More precise estimates of UDA and flow volumes that are planned for the future should enhance 
the high-resolution NHD layer [25] and further refine this pruning process. 
 
3.1.1 Partitioning 
The NHD is subdivided into region, subregion, and subbasin watershed areas. An evaluation of 
stream networks mapped at four scales within three NHD subregions identified reliable linear 
relations between drainage density and map scales ranging from 1:24 000 to 1:2 000 000 [26]. The 
relation for the Gasconade-Osage subregion is displayed in figure 3. Pruning may be guided by such 
regression equations; but, pruning to a single density tends to homogenize density and masks 
natural density variations that help characterize the terrain. A watershed can be partitioned into 
density classes to alleviate this issue, and each density partition can be separately pruned to an 
appropriate density. Others have partitioned large datasets into smaller sets for similar reasons [27, 
28].  
 
For this study, partitions are generated from catchments estimated for network features. An initial 
density class is assigned to each catchment based on its size. For instance, the highest density class 
is assigned to catchments with relatively smaller areas. Edges between catchments of the same class 
are removed to form clusters with similar densities. Density clusters are constrained to a minimum 
cluster size, and, therefore, any cluster that is too small receives the class of an adjacent cluster that 
is the most similar in size and not too small. Edges between clusters with the same class are 
removed, and the process repeats until all clusters are larger than the minimum size.  
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Figure 3:  Relation between drainage density and the square root of map scale ratio of source 
hydrographic features in the Gasconade-Osage subregion watershed of the United States. 
 
 
3.2.1 Polygon pruning 
After network pruning, waterbody and NHDArea polygon features are pruned through feature-type 
rules based on overlapping conditions and minimum-area criteria derived from the high-resolution 
NHD standards [29]. In short, a waterbody polygon that contains one or more artificial paths, which 
have all been pruned, is removed, unless it is a relatively prominent feature. Relatively prominent 
waterbodies are larger than 6.4516 square centimeters (cm2) (i.e., 1 in2) at the generalized map 
scale. Waterbodies without artificial paths are pruned if smaller than the minimum size at the 
generalized scale for the associated feature type. NHDArea polygons are pruned with similar rules, 
but without a condition for relatively prominent features. After waterbody and NHDArea polygons 
are pruned, a secondary rule removes NHDArea features that must overlap polygons pruned in the 
previous process. These rules ensure consistency among the remaining network and polygon 
features.  
 
Network pruning by UDA and associated polygon pruning is an attempt to apply a holistic solution 
for automated database generalization using knowledge of surface-water drainage and cartography 
and how it is topologically encoded in the database. Muller recommends the use of "knowledge-
based tools to support automated solutions" for generalization [30]. The approach could be 
classified under the Brassel-Weibel conceptual model [14]. In knowledge-based systems, the 
knowledge base and inference mechanism are separated [30, 31]. In our case, the knowledge base 
consists of UDA values and the reach composition of network features in the database and the size, 
feature type, and network association of polygon features. The inference engine is the partitioning 
and pruning rules applied through programs.  
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4.0  Experimentation: Pilot Project 
Methods were tested through a pilot project and automated through Arc Macro Language (AML) 
and Python programs with associated geo-processing functions.  
 
4.1  Test data 
Five subregions of high-resolution NHD data near the center of the United States were processed 
for the pilot project. In this area, the high-resolution NHD was compiled from 1:24 000-scale source 
data and will be referred to as 24K, for brevity. The Arkansas and Cimarron Rivers are the primary 
rivers draining these subregions. The study area includes 48 subbasins (fig. 4) covering about 192 
670 (square kilometers) km2.  
 

 
Figure 4: Pilot study area (outline in thick black line) in central United States containing 48 NHD 
subbasins over hill-shaded terrain model, with NHD regions in thick white lines and numbered, and 
state boundaries in thin white lines. 
 
After removing all non-flow-directed and over- or under-passing features, a total of 294 607 24K 
network features remain for subsequent processes. These features total about 215 990 km in length 
and have a drainage density of 1.121 km/km2. A single inflow to the 24K network features exists for 
this study area. An inflowing estimate of 34 856 km2 from 100K NHDPlus attributes [25] was 
applied to 24K inflow, and the 24K network features were enriched with catchment area and UDA 
estimates. The maximum UDA on the 24K features is 209 030 km2. 
 
4.2 Pruning 1:24 000-scale NHD to 100 000-scale 
The enriched 24K NHD features were pruned to 100K. The 100K NHD was used as a benchmark 
dataset for comparison; therefore, target densities for network pruning were derived from the 100K 
network features. Target densities from the 100K features are expanded by 7.5 percent to account 
for extra detail, or granularity, included in 24K network representations. A 100K-to-24K length 
expansion factor was estimated from 50 matching confluence-to-confluence sections between the 
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24K and 100K networks. The expansion factor of 1.075 was determined as the average ratio of the 
24K to 100K lengths for the 50 matching sections, which are distributed over the study area.  
 
Pruning was tested with and without partitioning. The 100K includes 129 330 km of network 
features. Without partitioning, the 100K target density derived after applying the 100K-to-24K 
expansion factor is 0.7216 km/km2.  
 
For the partitioned case, the study area was partitioned into high and low density partitions from 
NHDPlus catchments for 100K network features. The NHDPlus catchments originally were derived 
from an elevation model [25]. Initially, 100K catchments less than 9 km2 were placed in the high 
density class, and remaining catchments were assigned low density. A minimum cluster size of 400 
km2 generated two partitions. The resulting high and low density partitions have 16 and 8 clusters, 
respectively, with each partition covering about one-half of the study area (fig. 5). Applying the 
expansion factor, target densities determined from the 100K network features falling in each 
partition are 1.0309 and 0.4106 km/km2 for the high and low density partitions, respectively. Each 
24K network reach was assigned the density class of the partition it mostly falls in.  The high- and 
low-density sets of 24K features were pruned separately to the associated 100K densities. 
 

0 200100 Kilometers

Density Class

High

Low
 

Figure 5: Density partitions for study area determined from 1:100 000-scale catchments. 
 
In addition, the 24K features were pruned to 100K using the same partitions, but target densities 
were determined from flow-directed 100K network features only. This case helps assess the effect 
of local high concentrations of 100K network features without flow direction on pruning results. 
 
4.3 Summary statistics and benchmark comparisons 
Summary statistics were computed for network and polygon features in the study area for the 24K 
NHD before and after pruning, and from the 100K NHD benchmark. Quantities that compare the 
pruned 24K to the 100K benchmark features are described in section 4.3.3. 
 
4.3.1   Network statistics 
Network statistics are total network length, average segment length, number of confluence-to-
confluence sections, confluence-to-confluence ratio with 24K NHD, density, and percent of study 
area covered by mapped network lines. Average segment length is the average distance between 
vertices of all network features, and it equals the network length divided by the number of segments 
in the network. Confluence-to-confluence ratio with 24K NHD is the ratio of the number of 
confluence-to-confluence sections in a network to the number of confluence-to-confluence sections 
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in the 24K network. The percent of study area covered by mapped network lines is computed based 
on a 0.0203 centimeters (cm; 0.008 inch) line-weight used for the USGS primary series quadrangle 
maps [32], and it equals 100*w*d*L/A, where w is the line-weight, d is the scale denominator, L is 
the length of the network, and A is the study area in km2.  
 
4.3.2  Polygon statistics 
Polygon statistics are number of polygons, number-of-polygons ratio with the 24K NHD, total area 
of all polygons, percent of study area covered by all polygons, and percent of study area covered by 
line and polygon features. The number-of-polygons ratio with the 24K NHD is the ratio of the 
number of polygons in the data set to the number of polygons in the 24K NHD. The percent of the 
study area covered by line and polygon features equals the percent of the study area covered by 
polygon features plus the percent of the study area covered by line features, as defined in the 
previous section. 
 
4.3.3  Network comparison statistics 
The coefficient of line correspondence (CLC) estimates how well two sets of lines, representing 
similar features on the ground, overlap each other. CLC is similar to the coefficient of area 
correspondence described by Taylor [33]. CLC is the ratio M/(O+C+M), where M is the sum of the 
lengths of matching benchmark lines, O is the sum of the lengths of benchmark lines that are 
omitted from the test data set, and C is the sum of the length of test lines that do not have a match in 
the benchmark data set (commission errors), which is divided by the 100K-to-24K length expansion 
factor. Reducing test line lengths in C by the expansion factor puts all values on a common scale. 
The proportions of commission and omission errors equal C/(O+C+M) and O/(O+C+M), 
respectively. Aside from values for the entire study area, a separate CLC value was computed for 
each cell of a half-degree, latitude-longitude grid covering the study area, which has 114 cells.  
 

0 21
Kilometers

Omission errors

Matching benchmark lines
Buffer for pruned lines

 
Figure 6: Example of omission errors and matching lines on the benchmark network. Most of the 
confluence-to-confluence section of an omission error falls outside the buffer for pruned network. 
 
Omission errors are estimated by generating a buffer around the pruned network features and 
identifying confluence-to-confluence sections of the benchmark network that fall mostly outside the 
buffer (fig. 6). Matching lines are confluence-to-confluence sections of the benchmark network that 
fall mostly inside the buffer. Commission errors are estimated by generating a buffer around the 
benchmark lines and identifying confluence-to-confluence sections of the pruned network that fall 
mostly outside the benchmark buffer. The buffer size is the combined horizontal positional accuracy 
estimates for each network. Positional accuracy for each network is estimated as twice the tolerance 
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for well-defined points from the U.S. National Map Accuracy Standards at the associated scales. 
The tolerance for well-defined points at 24K and 100K is 1/50th of an inch [34], so the buffer size is 
2/50th inch at 24K plus 2/50th inch at 100K, which equals about 126 m on the ground. 
 
5.0 Results 
Results of pruning network and polygons features from 24K to 100K with partitioning are 
illustrated in figure 7. The obvious density change along quadrangle boundaries in the 100K is 
somewhat maintained by partitioned pruning, but it is not as pronounced as in the 100K.  
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Network flowlines
Waterbody and NHDArea

(b) (c)
 

Figure 7: Comparison of (a) original 1:24 000-scale (24K) NHD flowline, waterbody, and area features 
with (b) the same feature classes from the 1:100 000-scale (100K) NHD benchmark, and (c) the 24K 
features pruned to 100K with partitioning. 
 
5.1   Network pruning results 
Without partitioning, pruning 24K network reaches having a UDA less than 1.8083 km2 produces 
the target 100K density of 0.7216 km/km2. With partitioning, the 24K reaches falling mostly within 
the high density partition have a density of 1.4980 km/km2, and those falling mostly within the low 
density partition have a density of 0.7420 km/km2. Pruning the 24K high- and low-density reaches 
having a UDA less than 1.4259 and 3.5332 km/km2, respectively, produced the 100K densities 
required for each partition.  
 
Network summary statistics are shown in table 1. Average length of line segments, or the average 
distance between vertices, in the 24K network is about one fourth the average of the 100K line 
segments. The general rule of Töpfer's Radical Law [35] suggests the ratio of the number of objects 
in two maps should equal the square root of the ratio of the map scales [36], but for linear features, 
and the number of points on linear features, an exponent of two should be applied to the ratio [37], 
so the Radical Law suggests the ratio of the number of 24K to 100K line features, or the ratio of the 
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number of points (or line segments) representing the same line features at 24K and 100K should be 
about 4. The ratio between the number of segments in the pruned and 100K networks is about 4. 
 
Pruning with partitioning provides about 1 percent more confluence-to-confluence sections than 
pruning without partitioning (table 1). The ratio of the number of confluence-to-confluence sections 
between pruned and un-pruned 24K network features is about 3.3. The ratio between 100K and un-
pruned 24K network features is about 4, which is about the ratio expected from Töpfer's Radical 
Law for lines, so the pruned networks may have a few more confluence-to-confluence sections than 
expected. 
  
Table 1: Network summary statistics for the source 24K NHD, 24K NHD pruned to 100K using one 
density partition, 24K NHD pruned to 100K by two density partitions, and the 100K NHD benchmark. 
[24K, 1:24 000-scale; NHD, National Hydrography Dataset; 100K, 1:100 000-scale; km, kilometers; m, 
meters; km2, square kilometers] 

Network  
data set 

Total 
network 
length (km) 

Average 
segment 
length 
(m) 

Number of 
confluence-to-
confluence 
sections 

Confluence-
to-confluence 
ratio with 
24K NHD 

Density 
(km/km2) 

24K NHD 215 995 17.2 185 037 1.0 1.1211 

24K NHD 
pruned to 100K 
by one density 

139 023 17.3  55 734 3.3 0.7216 

24K NHD 
pruned to 100K 
by two densities 

139 025 17.3  56 357 3.3 0.7216 

100K NHD 
benchmark 

129 328 63.3  45 754 4.0 0.6712 

 
 
5.1.1   Short tributaries 
A larger number of short tributaries appear to be included in the pruned 24K network than in the 
100K (fig. 7). Data standards for 100K NHD and 100K USGS topographic maps indicate that, in 
non-arid regions, stream/river features larger than 1.60 cm should be included in the 100K NHD, 
but shorter streams may be included if they flow from a two-dimensional (polygon) surface-water 
feature, or if the stream is more than 0.061 cm wide [38, 39]. The benchmark, 100K NHD network 
includes 1 704 tributaries that are less than 1.6 km (1.6 cm at 100K) and not flowing from surface-
water polygons in the study area, and these tributaries average 1.1 km. But the 24K network 
features pruned to 100K using partitions includes 4 401 of this type of tributary, averaging about 1 
km in length.  
 
5.1.2   Small disconnected sub-networks 
Earlier results indicate that small, disconnected sub-networks may be maintained after pruning by 
UDA [40]. The 100K NHD network includes 229 sub-networks that are less than 1.6 km long 
totaling about 221 km, or less than 1 km per sub-network. The 24K network pruned to 100K using 
partitions includes 246 small sub-networks totaling about 193 km, or about 0.79 km per sub-
network. 
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5.1.3 Coefficient of line correspondence 
For the entire study area, about 83 percent of the 45 754 confluence-to-confluence sections of the 
benchmark network match the 24K network pruned to 100K without partitioning. Matching 
benchmark features total 112 308 km. Matching features in the network pruned without partitioning 
compose about 83 percent of the 55 734 confluence-to-confluence sections of the pruned network. 
About 17 020 km of the benchmark features are omitted from the pruned network without 
partitioning, and about 17 919 km of features in this pruned network are commission errors. These 
numbers produce a CLC of 0.77 for the study area, with proportions of omission and commission 
errors at about 0.12 for network pruning without partitioning. 
 
With partitioning, about 87 percent of the confluence-to-confluence sections in the 100K 
benchmark network match the features in the pruned network. Matching benchmark features total 
116 319 km, whereas 13 109 km of the benchmark features are omitted from the pruned network. 
About 86 percent of the 56 357 confluence-to-confluence section in the pruned network match the 
benchmark features, and 13 762 km of the pruned features are commission errors, so pruning with 
partitioning produces a CLC of 0.82 for the study area, with proportions of about 0.09 for omission 
and commission errors. 
 
CLC values determined for each 0.5-by-0.5 degree cell of the 110-cell grid covering the study area 
are shown in table 2. Four cells of the grid that do not include at least one confluence-to-confluence 
section from either network were removed. Partitioning improves the mean CLC value for the 110 
grid cells by 0.05, or about 6 percent. A few cells of the 100K benchmark network include a large 
proportion of features without flow-direction, which are counted as omission errors because only 
flow-directed features are included in pruned networks. Removing flow-directed benchmark 
features from the analysis does not affect the mean CLC over all cells, but it increases the minimum 
CLC value by about 18 percent from 0.40 to 0.47. 
 
Table 2: Summary for 0.5-by-0.5 degree grid (110 cells) of CLC values comparing benchmark features 
to 24K NHD network features pruned to 100K using one and two density partitions. CLC also is shown 
comparing only flow-directed benchmark features to 24K NHD network pruned to 100K through the 
two density partition method. 
[CLC, coefficient of line correspondence; benchmark, 1:100 000-scale network; 24K, 1:24 000-scale, 
NHD, National Hydrography Dataset; 100K, 1:100 000-scale] 

Network pruning 
method 

Mean 
CLC 

Standard 
deviation Minimum Maximum 

One density 0.75 0.099 0.40 0.93 

Two densities 0.80 0.095 0.40 0.93 

Two densities, only 
flow-directed 
benchmark features 

0.80 0.081 0.47 0.93 
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Figure 8: Distribution of the coefficient of line correspondence (CLC) on a 0.5-by-0.5 degree grid, and 
partition boundaries. CLC values compare the 1:24 000-scale network pruned in partitions to 1:100 
000-scale (100K) with the flow-directed features of the 100K NHD benchmark network. 
 
 
The distribution of CLC values over the study area for partitioned pruning is shown in Figure 8. 
Relatively smaller CLC values identify vicinities where larger proportions of mismatching features 
exist. For instance, figure 9 displays a cell in the south central part of the study area where a 
relatively low CLC (0.54) is caused by a large proportion of omission errors. In figure 9, a group of 
high-density catchments within the flood plain are clustered in the low-density partition because 
they are surrounded by larger, low-density catchments; subsequently, this group of high-density 
features was pruned to the lower density. 
 

 
Figure 9: A local high-density area was forced into the low-density partition during clustering. 
Subsequent pruning of this area to a low density causes a relatively large number of omission errors 
and a low CLC cell value (0.54). 
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5.2   Polygon pruning results 
A summary of polygon pruning results are presented in table 3. Töpfer's Radical Law for polygons 
should include an exponent of three [37], suggesting the ratio of the number of polygons in the 24K 
and 100K should be about 8.5. Ratios in table 3 indicate the benchmark includes much fewer 
polygons than expected from the Radical Law, and the pruned datasets appear to have more than 
twice the number of polygons as expected. According to Dutton [37], exponents to Töpfer's Law 
can vary based on object type and map purpose, and a constant also may be applied. Furthermore, 
values in table 3 were derived for the benchmark dataset after feature simplification, whereas the 
pruned datasets were not simplified. Amalgamation should reduce the number of polygons in the 
pruned dataset, making the ratio comparable.  
 
Table 3: Polygon summary statistics for the source 24K NHD, 24K NHD pruned to 100K using one 
density partition, 24K NHD pruned to 100K by two density partitions, and the benchmark 100K NHD. 
[24K, 1:24 000-scale; NHD, National Hydrography Dataset; 100K, 1:100 000-scale; km2, square 
kilometers] 

Polygon  
data set 

Number of 
polygons 

Number-of-
polygons 
ratio with 
24K NHD 

Area of 
all 
polygons 
(km2) 

Percent 
of study 
area in 
polygons 

Percent of 
study area 
covered by 
lines and 
polygons 

24K NHD 118 435 1.0 1 633.4 0.85 1.39 

24K NHD pruned 
to 100K by one 
density 

  37 079 3.2 1 393.1 0.72 2.19 

24K NHD pruned 
to 100K by two 
densities 

  36 870 3.2 1 393.9 0.72 2.19 

Benchmark 100K 
NHD 

    5 868 20.2 1 262.9 0.66 2.02 

 
 
Estimates of the percent of a map that would be covered by hydrography symbols using the various 
datasets are shown Table 3. Pruned polygons cover about 10 percent more space than benchmark 
polygons. Pruned lines cover precisely 7.5 percent more space than benchmark lines because of the 
applied linear expansion factor. So, a goal for subsequent feature simplification processing could be 
to reduce polygon space by 10 percent, and line space by 7.5 percent.  
 
6.0 Summary 
Network pruning produces slightly more confluence-to-confluence sections than expected when 
compared to the 100K benchmark or through the Radical Law. More headwater tributaries and 
small disconnected sub-networks exist in pruned networks than in the benchmark, but many of 
these may be legitimate given 100K feature specifications. A reasonable pruning enhancement 
would be to remove extremely short headwater tributaries and tributaries composed of artificial path 
inside of large polygons, except for the extension of the main path. 
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The CLC is a good measure of omission and commission errors between networks, and the 
distributed CLC helps isolate areas where network matching is relatively poor. The CLC estimate 
assumes each line set has a consistent level of accuracy. CLC may be enhanced through a variable-
sized buffer based on feature type or some other attribute associated with positional accuracy.  A 
confidence interval for the mean CLC could strengthen its usefulness.  
 
Partitioning improves the amount of matching features in pruned and benchmark networks by about 
four percent over non-partitioned pruning. Partitioning could be refined to generate more 
homogeneous density clusters and better maintain local density variations in pruned networks. 
 
The number of polygons remaining after pruning seems too large in comparisons to benchmark 
polygons, and based on the Radical Law. However, the map space covered by hydrography 
polygons is only slightly more than the benchmark, and some of this difference should be removed 
through subsequent polygon simplification processes. Development of an indicator similar to the 
CLC could better assess the adequacy of the polygon pruning. 
 
In the pilot project, partitioning and pruning were tailored for the benchmark dataset. 
Implementation of pruning on the high-resolution NHD requires density partitions for 24K 
catchments and a method to associate target densities to each partition, which may be estimated 
through regression or some form of Töpfer's Radical Law.  
 
7.0  Conclusion 
This paper presents automated methods to prune flowline and polygon features of the United States 
high-resolution NHD to support the generalization needs of the USGS. Network and connected 
polygon features are pruned by UDA and reach codes until a desired drainage density is achieved. 
Standards-based rules guide remaining pruning operations, and local density variations that 
characterize terrain and climate conditions are maintained through data partitioning. UDA-based 
selection associates the prominence of a feature with its relative function, and it performs well on 
multi-scale representations, which exist in the high-resolution NHD. In comparison, perceptual-
based prominence estimates, such as stream order, assume consistent source feature representations 
and are not reliable for multi-scale data.  
 
Results indicate network pruning achieved very good results, with about 83 percent of the 
benchmark network features matching those of the pruned network. Partitioned pruning improved 
results by about 4 percent. CLC values of 0.82 and 0.77 resulted from pruning with and without 
partitioning, respectively. The number of polygons remaining after pruning is about seven times 
that of the benchmark, but the amount of area covered by the pruned polygons is only about 10 
percent greater than the benchmark. Simplification operations, particularly amalgamation should 
somewhat compensate for the large difference in polygon numbers.  
 
Future enhancements include revising partitioning, removing inappropriate small network features 
during pruning, and enhancing CLC estimation, along with developing a similar process for 
polygon features. The USGS and cooperators will evaluate the approach over the range of 
geographic conditions in the country through web-distributed tools. Subsequently, the process will 
be implemented for the NHD, and similar generalization methods will be applied on other vector 
themes of The National Map. 
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