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Project Description 
 
 
Background 
 
Watershed managers rely on geospatial datasets depicting land use, hydrography, soil and 
geologic properties, vegetative cover, elevation, contaminant sources, and other 
distributed processes to make informed decisions about the allocation of scarce water 
resources between competing demands of human growth and aquatic ecosystem integrity. 
These spatial datasets, however, are imperfect.  They differ from real-world distributions 
that they represent because of uncertainties inherent to data collection. Since watershed 
management decisions inherit the accuracy of geospatial data used to inform them, the 
reliability of watershed management decisions is only as good as the accuracy of these 
datasets.   
 
Producers of GIS spatial datasets in the United States are required by Federal Geographic 
Data Committee (FGDC) metadata standards to report estimates of error (SDTS Task 
Force, 1996).  Elements of the Data Quality section of the FGDC Content Standard for 
Digital Metadata (CSDGM) include positional and attribute error.  Both sources of error 
contribute to data uncertainty, often in ways that are difficult to distinguish from one 
another.  Error is typically reported using summary statistics derived by comparing 
ground measurements with dataset values for a subset of the data.  This approach treats 
uncertainty as if it were the same at every location, or as a global phenomenon.  In 
reality, uncertainty in spatially-distributed data is local in nature, varying from one 
location to another depending on the unique characteristics of the data and on the 
methods used to measure it or simulate it using deterministic rainfall-runoff models 
(Heuvelink and others, 1989; Openshaw, 1989; Fisher, 1991; Lee and others, 1992; 
Englund, 1993; Goodchild, 1995; Unwin, 1995; Burrough and others, 1996; Ehlschlaeger 
and others, 1997).    
 
Local variations in uncertainty of distributed data occur for a number of reasons. 
Uncertainty close to measurement locations will tend to be smaller, increasing with 
greater distance from them, at a rate dictated by the correlation scale of the data.  It will 
be larger in regions where the data is most spatially variable and smaller in areas where it 
is not.  Further compounding the issue of local uncertainty is its tendency to vary with 
spatial scale, with higher levels of uncertainty typically associated with measurements 
collected over larger scales of spatial resolution. This dependence of dataset uncertainty 
on both location and scale should be incorporated into any framework used to assess the 
uncertainty of data critical to making watershed management decisions.  
 
If spatial variations in the distributed data demonstrate approximate periodicity over 
space, the data can be treated as a gaussian random process with uniform mean, variance, 
and correlation scale over space.  This property, referred to as second-order stationarity, 
is the foundation of traditional geostatistical methods used for assessing data uncertainty.  
Figure 1 shows an example of a stationary gaussian process in the time domain, but the 
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concept is the same when analyzing processes distributed in space.  When a process is 
stationary, the statistics of the underlying joint distribution associated with the process 
are assumed global, and equally valid at every point in space. 
 
Many traditional geostatistical techniques rely on techniques of Fourier analysis to bring 
the dataset into the frequency domain, treating the stationary, scale-invariant dataset as 
the sum of an infinite number of shifted sine basis functions that extend throughout the 
spatial domain.  Hydrologists and other physical scientists have made extensive use of 
such Fourier techniques to assess the global uncertainty of geospatial datasets (Bakr and 
others., 1978; Gutjahr and Gelhar, 1981; Dagan, 1982; Mizell and others, 1982; Gelhar 

and Axness, 1983; Naff and 
Vecchia, 1986; McLaughlin 
and Wood, 1988; Vomvoris 
and Gelhar, 1990; Robin and 
others, 1993). These estimates 
of uncertainty represent 
average error, in some mean-
squared sense, and are assumed 
to apply locally as well as 
globally. They are well-suited 
to analyzing distributed 
processes that were created as 
the result of large-scale 
spatially-invariant geophysical 
influences. 
 

 
Figure 1.  Stationary gaussian process in time as the sum of 
cosine functions with differing frequencies (from http:// 
130.191.21.201/multimedia/jiracek/dga/spectralanalysis/examples.html). 
 
 
Most naturally occurring distributed datasets, however, are not gaussian (see Figure 2).  
Their mean, variance, and correlation scale change over space in response to the local 
geophysical processes that formed them.  They may exhibit non-stationary behavior at a 
variety of scales, including hierarchies of continuously-evolving scales of spatial 
variation (Neuman, 1990).   Such scale-dependent structure often occurs when a variety 
of geophysical processes, each dictated by its own natural scale of variation, collectively 
produce the observed geospatial dataset. Geologic processes responsible for soil and 
aquifer formation, for example, range from small-scale fluvial sediment transport 
mechanisms to large-scale tectonic influences.  In the presence of such non-stationary, 
scale-variant behavior, global estimates of error derived using standard gaussian 
geostatistical techniques will not accurately reflect local data uncertainty, and water 
resource management decisions made at township and watershed scales may be seriously 
compromised.   
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Figure 2. Non-stationary process in time 
(from http://www.iro.umontreal.ca/~lisa/seminaires/22-07-2005.pdf). 

 
 

As described previously, traditional Fourier methods of estimating non-local uncertainty 
are based on the assumption that the joint statistical behavior of the distributed process 
does not change over space or scale, and are appropriate only for application to 
stationary, scale-invariant geospatial datasets that exhibit strong global periodicities.  
Wavelets, on the other hand, are small waves characterized by locally-periodic structure 
that dampens out over space, as shown in Figure 3. The compact support of wavelet basis 
functions over space is what makes them 
useful for analyzing local structure 
(Walker, 1999; Walnut, 2004).  Wavelets 
range from short, high-frequency 
functions capable of resolving small-scale 
features to long, low-frequency functions 
able to preserve large-scale structure. 
Since wavelets characterize data at a 
variety of different scales of resolution, 
dataset variation at many frequencies can 
be simultaneously accounted for at each   
location.   

                                  Figure 3. Mexican Hat  wavelet 
             (from  http://www.lac.inpe.br/~margarete/JASRWavelet.pdf). 

 

How do wavelets handle local spatial variations at multiple scales?  Figure 4 illustrates a 
set of wavelets obtained by successively re-scaling or ‘dilating’ a continuous Mexican 
Hat mother wavelet by powers of two.  Again noting that we can substitute space for 
time, each wavelet describes data variability at a particular scale of spatial resolution, 
independent of variability at all other spatial scales.  Some wavelets, such as the 
continuous Haar wavelet transform presented in Figure 5, are particularly adept at 
characterizing spatial variability in the presence of sharp discontinuities frequently 
encountered in natural distributed processes influenced by large-scale formative 
processes.  
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Figure 4. Wavelets obtained by scaling a Mexican Hat wavelet 
(from http://www.iro.umontreal.ca/~lisa/seminaires/22-07-2005.pdf). 

 
            
 

 
Figure 5. The Haar wavelet 

(from http://en.wikipedia.org/wiki/Haar_wavelet). 

 
 
 
 
 
 
Hypothesis 
 
The local support of wavelets and their ability to handle more than one scale of spatial 
variation make them well-suited to analyzing local, scale-dependent behaviors of natural 
distributed processes (Katul and others, 1994; 1997; 2001).  Many of the natural 
processes used to make water resource decisions exhibit non-stationary, scale-variant 
structure because the very processes that formed them varied over both space and scale.  
Wavelets provide a useful framework for explicitly quantifying local uncertainty in 
natural processes and for assessing the fitness of datasets for making sound water-
resource decisions. An understanding of the distribution of local uncertainty is critical to 
making reliable local management decisions, particularly if the dataset is used as input to 
a highly nonlinear rainfall-runoff model.  Under such conditions, local errors may 
become amplified and can propagate to other scales as they cascade through the model. 

Figure 6 illustrates how wavelet analysis provides information about local, scale-variant 
structure.  To perform a continuous wavelet transform, Morlet wavelet functions of 
varying scale, with s=1 for the mother wavelet and larger values of s for increasingly 
dilated wavelets, are translated at regular intervals beginning at the start of the process.  
The wavelet function characterized by scale s=1 is multiplied by the signal, integrated 
over all space, and multiplied by 1/sqrt(s).  The resulting transformed value, a measure of 
the degree of correlation between the wavelet and the process, is plotted as amplitude in 
the space-translation/scale wavelet domain shown in Figure 8.   The same wavelet is then 
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shifted towards the right by a small amount, and a new transform value obtained and 
plotted. This procedure is repeated until the wavelet reaches the end of the signal. 

When the transforms of the translated wavelet characterized by scale s=1 have been 
determined, the wavelet is dilated to scale s=2, and the procedure outlined above 
repeated, as illustrated in Figure 7.  The wavelet is successively dilated to larger scales 
until the scale of the wavelet becomes so large that it no longer contains any useful 
information about the underlying geospatial process. All space- and scale-dependent 
behavior of the process is contained in the wavelet domain shown in Figure 8, which can 
be used to reconstruct the process or to generate many equally-probable alternate 
realizations by randomly selecting subsets of wavelet amplitudes.  In practice, discrete 
wavelet transforms, such as Daubechies wavelets, are used rather than continuous 
wavelets to avoid the large computational burdens associated with oversampling in 
highly-redundant low frequency ranges (Daubechies, 1992).  Extension of wavelet 
transforms to two-dimensional geospatial processes, which involves using higher-
dimensional versions of the wavelets shown in Figure 6 and Figure 7, is straightforward. 

                     

 

Figure 6. Translating a Morlet wavelet with scale s=1 through a process 
(from http://www.mathworks.com/access/helpdesk/help/toolbox/wavelet/wavelet.html?/access/helpdesk/help/toolbox/wavelet/ch01_i15.html). 

 
 
 

 

 
 

Figure 7. A Morlet wavelet with scale s=2 
(from http://www.mathworks.com/access/helpdesk/help/toolbox/wavelet/wavelet.html?/access/helpdesk/help/toolbox/wavelet/ch01_i15.html). 
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Figure 8. Plot of wavelet coefficients over scale and space 
 (from http://users.rowan.edu/~polikar/WAVELETS/WTpart3.html). 

 
 
Objectives and Approach 
 
The objectives of the proposed research are to: 

• Develop a methodology for assessing local uncertainty in non-stationary, scale-
variant natural processes; and 

• Build a user-friendly GIS tool within the ArcGIS framework to implement the 
local uncertainty analysis. 

 
As discussed previously, wavelets provide a useful tool for assessing local spatial 
variations in non-stationary, scale-variant natural processes.  They differ from standard 
geostatistical techniques that assume the distributed process is statistically stationary and 
governed by a single characteristic scale of spatial variation.  How do we translate 
understanding of non-stationary, scale-variant spatial structure obtained from wavelet 
analysis into estimates of local uncertainty? 
 
Any distributed dataset represents a single possible set of geospatial data from among all 
possible datasets.  To see that this is true, imagine the addition of a piece of data to the dataset.  
The resulting dataset will differ from the one that contained all the original data.  Likewise, 
removal of a piece of data will produce a different dataset.  This dependency of the dataset on 
the particular pieces of data collected occurs whenever we lack complete knowledge about the 
distributed process. It remains the principal source of uncertainty in most geospatial datasets. 
 
We can mimic this lack of knowledge by randomly re-sampling the observed dataset, 
artificially producing an alterative dataset that is close to the original dataset but 
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containing local error.  If we do this repeatedly and in the same manner each time using a 
Monte Carlo approach, an ensemble of equally-probable datasets, or realizations, can be 
generated. Figure 9 illustrates how N alternative datasets might be generated by 
repeatedly re-sampling 23 of the 30 original data points, with replacement of all data 
points prior to each episode of re-sampling.  In effect, this process of re-sampling with 
replacement, called bootstrapping, locally perturbs the dataset (Davison and Hinkley, 
1997; Efron and Tibshirani, 1993).  Collectively, the ensemble of N perturbed datasets 
provides us with information needed to assess local dataset uncertainty, by allowing us to 
estimate the variance at each location, as shown in Figure 10.   
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Figure 9.  Bootstrappping generates N equally-probable alternative datasets. 

 
 
 
Since bootstrapping does not involve making any assumptions about the global 
probabilistic behavior of dataset error, it would appear to be well-suited to the problem of 
assessing local uncertainties caused by non-stationary scale-variant influences.  However, 
the random sampling inherent to bootstrapping requires that each piece of data be 
independent of all other data in the dataset.  When the data are correlated over space, as 
they typically are for natural processes, bootstrapping can produce biased estimates of 
statistical properties at a point.  To overcome this problem, we re-sample in the wavelet 
domain where the data are uncorrelated, rather than in the space domain (Percival and 
others, 2001; Breakspear and others, 2003).  When the wavelet coefficients are brought 
back into the space domain, they provide an alternative dataset that preserves overall 
spatial structure contained in the original dataset, minus local structure associated with 
wavelet coefficients not re-sampled by the bootstrapping algorithm. 
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To implement the non-stationary, scale-variant uncertainty analysis, either an ArcMap 
UIButtonControl tool or a stand-alone VB.NET application will be developed within the 
ArcGIS framework.  In either case, a button control will be attached to visual basic code 
and triggered by its click event.  Initially, the code will determine whether the user-
specified data is a feature class that must be converted into the raster format required to 
perform the uncertainty analysis.  After raster conversion, the tool or application will then 
perform a single wavelet transform that uniquely defines the space- and scale-dependent 
characteristics of the input dataset.  Localization of wavelets in space and frequency tends 
to produce sparseness in the distribution of non-zero wavelet coefficients over location 
and scale, a phenomenon that is well documented in the literature (Mallat, 1998). To 
account for such sparseness, the bootstrapping algorithm will automatically reject zero-
valued coefficients during re-sampling.  Depending on user-input specifications, the code 
will then repeatedly apply the bootstrapping algorithm in the wavelet domain to produce 
an alternate realization, 
followed by an inverse 
wavelet transform to 
bring each realization 
back into the space 
domain.  Finally, 
ensemble statistics at 
each point will be 
estimated, and when the 
user moves the screen 
cursor over a particular 
location in the map view, 
the variance at that point 
will be displayed via the 
interface of the identify 
object class. 
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Figure 10.  Estimating local variance from the ensemble of 
alternative equally-probable datasets. 

 
Expected Results/Products 

The PI is an experienced ArcObjects programmer, and has written ArcObjects code 
within both VBA and VB.NET programming environments.  A sample of code recently 
written by the PI to test for a vector dataset layer and convert it to raster format is 
included in the appendix.  The code references methods and properties on interfaces of 
the map document, map, layer, raster layer, raster, raster workspace, raster dataset, 
feature class, feature class descriptor, raster conversion operation, and raster analysis 
environment object classes.   

Testing for and conversion of a feature class to raster format is the first step in bringing 
the spatial dataset into the wavelet domain, where it will be repeatedly re-sampled via 
bootstrappping, taken back into the space domain, and incorporated into the uncertainty 
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analysis.  Code to perform forward and inverse wavelet transforms is widely available on 
internet software developer user forums, including public domain fortran code distributed 
by Press and others (1992) for implementing Daubechies discrete wavelet transforms.  
This fortran code can easily be converted to VBA or Visual Basic .NET and included in 
the code executed by the uncertainty tool.  Additional code to perform bootstrapping and 
other operations essential to the analysis will be added during the course of the project.  
The final ArcGIS uncertainty tool or application will be distributed in the form of an 
ArcMap template (.mxt) document or as a dll binary executable, along with a user’s 
manual that describes output and provides guidance on how the user should interpret 
results of the uncertainty analysis. 
 
After the tool has been developed and fully documented, it will be applied to the two 
Highlands projects discussed in the Project Support section of this proposal.  Specifically, 
the tool will be used to flag locations and scales at which uncertainty in datasets used to 
inform water resource plans in the Highlands is most dominant.  At these locations and 
scales, collection of additional data will be most critical to reducing uncertainties in 
Highlands planning processes at the state, county, watershed, and township scales.   
 
Based on results of the proposed work, a journal article will be submitted to a peer-
reviewed journal specializing in GIS content, such as the International Journal of 
Geographical Information Science. The paper will describe details of the wavelet 
bootstrapping algorithm and its application to various Highlands datasets critical to 
members of the Highlands Council and to water managers at the New Jersey Department 
of Environmental Protection (NJDEP) responsible for making decisions about the 
allocation of water resources in the Highlands area.  
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Significance to the USGS Mission 

In support of the USGS mission to enhance our understanding of the Earth, mitigate 
losses from natural disasters, manage the allocation of scarce natural resources, and 
enhance environmental quality, the proposed study will provide a user-friendly tool to 
assess local uncertainty in non-stationary, scale-variant geospatial datasets typically used 
to make critical water resource decisions.  More specifically, the proposed research is 
expected to offer watershed planners and managers a better understanding of the accuracy 
of distributed data used to make water resource decisions, including those made to 
minimize flood- and drought-related loss of life and property, manage surface-water 
resources for human and ecological uses, protect and enhance water resources needed to 
sustain human health, aquatic health, and environmental quality, and promote well-
informed development of the Nation’s resources for the benefit of present and future 
generations.  A high degree of dataset uncertainty at a particular location and scale will 
indicate the need to collect additional data at or near that location at a scale of 
measurement close to the scale for which uncertainty is high, allowing greater reliability 
in plans developed at that site and scale.  Conversely, small uncertainty in data observed 
at a given point and scale of resolution will suggest a much lower priority be placed on 
data collection at or near the point at the measurement scale used to collect the data, and 
that resource allocation plans based on the data can be made with greater confidence. 

The proposed research will also contribute to the CEGIS mission by providing a tool that 
can help water resource managers more fully understand linkages between anthropogenic 
factors and environmental quality, particularly in the context of how distributed but 
poorly measured landscape disturbances may affect the integrity of biotic ecosystems, 
enhancing GIS expertise currently lacking in water resource and other USGS disciplines.  
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Project Support 
 
This research will support several ongoing USGS studies being conducted in the New Jersey 
Highlands, a 1,250 square mile area that provides water for a population of more than 5 
million people in New Jersey (http://www.highlands.state.nj.us/njhighlands/actmaps).  
Undisturbed forests in the Highlands have historically protected both surface-water and 
groundwater supply and quality, by acting as a natural buffer to extreme flow events and 
environmental degradation.  However, these forested lands are rapidly being lost to 
subdivisions and urban development.  The U.S. Forest Service estimated that roughly 5,000 
acres of forest and farmland was lost annually between 1994 and 2004 to urban and suburban 
development in the Highlands, threatening New Jersey’s water supply and the health of its 
aquatic ecosystems (http://www.state.nj.us/dep/newsrel/2004/crowntowers200405.htm).  In 
response to this growing challenge, the USGS is cooperating with the New Jersey Highlands 
Council and the NJDEP to assess the consequences of lost habitat and natural buffering 
capacity on water resource availability and quality in the Highlands.   
 
Under the scope of one of these cooperative efforts, the New Jersey Water Science 
Center (NJWSC) of the USGS provides critical geospatial data to Highlands Council 
decision makers responsible for defining optimal rates of growth based on water 
availability, sustainability, and susceptibility.   In accordance with the goals of the New 
Jersey Highlands Water Protection and Planning Act of 2004, the Highlands Council is 
developing a Regional Master Plan (RMP) based on scientifically robust principles.  The 
RMP will ensure continued economic opportunity while protecting water supply and 
sustaining aquatic ecosystem viability. In the absence of meaningful estimates of 
geospatial data uncertainty, Council members must assume that their plans to limit or 
accommodate development are equally reliable across the full extent of the Highlands, 
without regard for the impact of local data uncertainties on statewide, county, township, 
and watershed zoning plans.  The proposed CEGIS study will provide a tool to Highlands 
Council decision makers that will better inform critical growth decisions made at all 
locations and scales relevant to the planning process.  It will also provide quantitative 
information regarding locations where additional data collection would most improve 
reliability of the RMP. 
 
The USGS New Jersey Water Science Center is also working in collaboration with 
NJDEP to develop innovative methods for establishing passing streamflow requirements.  
Such requirements will help preserve natural streamflow variability critical to 
maintaining the integrity of aquatic ecosystems in the state.  The NJDEP study relies on 
USGS continuous streamflow data to calculate ecologically relevant hydrologic indices 
describing natural flow variability (Poff and Ward, 1989; Olden and Poff, 2003). 
Predicted alterations in these hydrologic indices caused by projected changes in water 
demand, land use, and other anthropogenic influences represent measures of growth-
related streamflow disturbance that will be used as surrogates for federally-mandated 
TMDLs.  To estimate these ‘hydro-TMDLs’ in ungaged basins where streamflow records 
are not available, indices estimated in gaged basins have been regressed on various 
spatial datasets, including geospatial data characterizing stream channel and basin 
morphology, land use, soil and geologic properties, vegetative cover, recharge, and 
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precipitation.  Streamflow indices and hydro-TMDLs estimated for ungaged basins using 
these regression datasets will tend to inherit local dataset uncertainties. The proposed 
CEGIS study will help quantify the reliability of hydrologic disturbance indices inferred 
for ungaged basins, and also provide information about where additional collection of 
data would most improve the reliability of hydro-TMDLs. 
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Budget - Year 1 
 
 
 

Budget Request 

Fiscal Year 2007 
Budget 

Budget 
Amounts by 
Participating 
Cost Center 

Code 

Total 
Year 1 

       2454   

Personnel Salary    93,160   93,160 

Other Expenses: 
travel, equipment, 
and supplies 

           0            0 

TOTAL DIRECT   93,160   93,160 

 

Gross Assessment 
Rate for Each 
Participating Cost 
Center 

   25.58%     

INDIRECT COSTS 
ESTIMATE 
(Gross Assessment 
Rate Times Total 
Direct) 

   23,830      23,830 

TOTAL 116,990   116,990 
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Appendix: Sample ArcObjects Code 
 
Private Sub RasterizeDataset_Click() 
   
  Dim pDoc As IMxDocument 
  Set pDoc = ThisDocument 
  Dim pMap As IMap 
  Set pMap = pDoc.FocusMap 
  Dim pLayer As ILayer 
  Set pLayer = pMap.Layer(0) 
   
  'Allow user to input name of workspace, then open it. 
  Dim DirName As String 
  DirName = InputBox("Input the name of the directory that you'd like  
 to use as the workspace:", "Input Name of WorkSpace") 
  Dim pWSF As IWorkspaceFactory 
  Dim pWS As IRasterWorkspace 
  Set pWSF = New RasterWorkspaceFactory 
  Set pWS = pWSF.OpenFromFile(DirName, 0) 
   
  'If feature layer, ask user to specify name of raster output,  
 cellsize, and attribute name, then convert to raster layer 
  If TypeOf pLayer Is IGeoFeatureLayer Then 
    
  'User inputs the name of the output grid, cellsize, and attribute  
 name. 
  Dim GridName As String 
  GridName = InputBox("Your dataset is in vector format, and must be  
 converted to a grid. Input the name of the grid where you'd like  
 to store the rasterized coverage:", "Input Name of Output Grid  
 for Vector Dataset") 
  Dim CellSize As Integer 
  CellSize = InputBox("Input the integer cell size.  Note that the  
 smaller the cell size, the more accurate local uncertainty  
 estimates will be:", "Input Cell Size") 
  Dim AttributeName As String 
  AttributeName = InputBox("Input the name of the attribute that you'd  
 like to use to rasterize your dataset:", "Input Attribute Name") 
   
  'Get the featureclass for the featureclassdescriptor. 
  Dim pFeatLayer As IFeatureLayer 
  Set pFeatLayer = pLayer 
  Dim pFeatureClass As IFeatureClass 
  Set pFeatureClass = pFeatLayer.FeatureClass 
       
  'Create a FeatureClassDescriptor 
  Dim pFCDesc As IFeatureClassDescriptor 
  Set pFCDesc = New FeatureClassDescriptor 
  pFCDesc.Create pFeatureClass, Nothing, AttributeName 
    
  'Test for old raster file left from previous runs, and delete if it  
 exists. 
  On Error Resume Next 
  Dim pRasterDS As IRasterDataset 
  Set pRasterDS = pWS.OpenRasterDataset(GridName) 
  If Not pRasterDS Is Nothing Then 
  Set pDataset = pRasterDS 
  If pDataset.CanDelete Then pDataset.Delete 
  End If 
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  'Set up the conversion environment. 
  Dim convert As IConversionOp 
  Set convert = New RasterConversionOp 
  Dim pEnv As IRasterAnalysisEnvironment 
  Set pEnv = convert 
  pEnv.SetCellSize esriRasterEnvValue, CellSize 
     
  'Convert to raster dataset. 
  Set pRasterDS = convert.ToRasterDataset(pFeatureClass, "GRID", pWS,  

 GridName) 
  
  'Convert the output raster dataset to layer and add to map. 
  Dim pRasterLayer As IRasterLayer 
  Set pRasterLayer = New RasterLayer 
  Dim pRaster As IRaster 
  Set pRaster = pRasterDS.CreateDefaultRaster 
  pRasterLayer.CreateFromRaster pRaster 
  pMap.DeleteLayer pLayer 
  Set pLayer = pRasterLayer 
  pMap.AddLayer pLayer 
    
  End If 
 
  End Sub 
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