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Executive Summary  
 Errors associated with geospatial data can propagate through natural-science (biologic, 

geographic, geologic, geospatial, and hydrologic) models that utilize raster processing, resulting 

in significant and spatially variable prediction uncertainty.  This inherent prediction uncertainty 

affects how model results are interpreted by scientists, environmental regulators, resource 

managers, elected officials, and the general public.  Frequently, USGS scientists use raster 

processing of geospatial data to create independent variables for empirical models, boundary 

conditions for mechanistic models, extrapolate beyond observed data (dependent variables) to 

make predictions for unobserved cases or spatial extents, and to make relatively simple, everyday 

calculations, such as defining depth to water using land-surface and water-table raster data sets. 

Yet, the propagation of input errors from geospatial data and resulting prediction uncertainty of 

raster-based models are rarely quantified.   

 To maintain scientific leadership and provide the best available science, the USGS must 

address the following priority research questions: What role does the propagation of error from 

geospatial data during raster processing have on prediction uncertainty of USGS models and 

calculations? How can this prediction uncertainty be quantified in these USGS models?  Can 

prediction uncertainty be minimized in future iterations of these USGS models? These priority 

research questions are addressed in the following proposal designed to develop and implement a 

stochastic-based method to identify the propagation of input errors from geospatial data during 

raster processing and to quantify the associated prediction uncertainty in USGS models.  A novel 

ArcGIS tool will be developed that uses Latin Hypercube Sampling (a stratified stochastic 

approach similar to Monte Carlo analysis) to quantify error propagation and prediction 

uncertainty of geospatial models.  As a demonstration example of the approach, utility, and high 

likelihood of success, the proposed method has been applied to a ground-water quality model of 

the High Plains aquifer.  This application of the proposed method successfully demonstrates that 

spatially-variable prediction uncertainty of geospatial models can be quantified, and illustrates 

that errors can be evaluated to reduce this uncertainty in future iterations of the model.  The 

demonstration example uses a common USGS hydrologic model, but the method and tool 

developed under this proposal would have cross-disciplinary applications for any biologic, 

geographic, geologic, geospatial, or hydrologic raster-based USGS model or product.   
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1.0 Project Description 

1.1 Research Questions and Hypotheses 
 To maintain scientific leadership and provide the best available science to the public and 

cooperators, USGS scientists must seek to present our data to the best of our ability and this 

includes estimates of and information on uncertainty of geospatial data and associated raster-

based predictive models. A major challenge is how to do this and make it understandable to 

USGS scientists and users of our geospatial data and models. Therefore, the following priority 

research questions must be addressed:  

Priority Research Question 1 — What role does the propagation of input error from geospatial 

data during raster processing have on prediction uncertainty of raster-based USGS models and 

geospatial data products?  

Priority Research Question 2 — How can this prediction uncertainty be quantified in these 

raster-based USGS models and products?  

Priority Research Question 3 — How can prediction uncertainty be minimized in future 

iterations of these raster-based USGS models and products? 

 The following research hypotheses will be evaluated and tested to provide answers to the 

above priority research questions.   

Hypothesis 1 — inherent error within geospatial data propagates through raster processing of 

simple and complex USGS models and results in spatially variable and potentially significant 

uncertainty associated with model output or predictions.       

Hypothesis 2 — the stochastic modeling approach of Latin Hypercube Sampling can be 

successfully implemented during raster processing to quantify the  propagation of input error 

from geospatial data and resulting prediction uncertainty.   

Hypothesis 3 — the results of Latin Hypercube Sampling provide necessary information and a 

systematic method to reduce prediction uncertainty of future iterations of raster-based models. 

1.2 Objectives 

 The primary objectives of the proposed research will address the previously stated 

research questions and hypotheses.   
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Objective 1 — develop an ArcGIS script and associated graphical user interface (GUI) as a tool 

within ArcMap that provides a stochastic (Latin Hypercube Sampling) framework to quantify the 

propagation of input errors and prediction uncertainty of raster processing.   

Objective 2 — evaluate the utility of the tool (outlined in Objective 1) for quantifying error 

propagation, quantifying prediction uncertainty, and minimizing uncertainty in simple 

calculations to complex models, across cross-disciplinary raster processing applications.       

Objective 3 — document the tool (Objective 1) in a User’s Guide, and publish the findings from 

the Objective 2 evaluation in peer-reviewed journals.     

1.3 Background and Literature Review 

 A fundamental activity common to all USGS disciplines is the collection of field-data 

(biologic, geographic, geologic, and hydrologic data) that is relevant to each science thrust. 

Traditionally, these data consisted of point-measurements or sample-collections at discrete 

locations.  This traditional view of field data has been expanded with the collection and 

development of numerous types of geospatial data.  Geospatial data represent parameters 

(attributes) of large geographic areas that aren’t feasible to sample or measure by hand and are 

typically represented in a geographic information system (GIS).  GIS provides a set of efficient 

tools for collecting, storing, retrieving, transforming, displaying, analyzing, and computationally 

modeling geospatial field-data (Burrough, 1986) that has wide application to and support of a 

majority of USGS science thrusts. Therefore, the manipulation of geospatial data within GIS 

plays a critically important role in the USGS Mission and Strategic Direction.   

 Arguably one of the most common types of manipulation of geospatial data in GIS 

(perhaps on a daily basis by many USGS GIS-practitioners) is the use of raster processing to 

make new geospatial data sets.  The scope of raster processing ranges from simple to complex 

computational models, with the objective of creating geospatial data for either stand-alone 

applications or implementation in more complex natural science USGS models.  The importance 

of raster processing is illustrated by the fact that the resulting geospatial data have a very frequent 

direct or indirect influence on the results of many USGS models.  The popularity and far-reaching 

application of raster processing has created a significant challenge for USGS scientists and GIS-

practitioners; endemic uncertainty associated with USGS model predictions because of inherent 

propagation of geospatial data error during raster processing (Mowrer and Congalton, 2000). 

 This challenge stems from the unavoidable and inherent errors associated with geospatial 

data in GIS as imperfect representations of the real world (Zhang and Goodchild, 2002; Hunsaker 

Gurdak and Qi, Methods to Quantify Error Propagation and Prediction Uncertainty  
for USGS Raster Processing 

3



et al., 2001; Burrough and McDonnell, 1998).  There are two main types of GIS errors: a) source 

errors that exist in geospatial data; and b) error propagation through operations performed on 

these data, including raster processing (Yeh and Li, 2003; Heuvelink, 1998).  The data source 

errors of geospatial data are defined by the difference between reality and the representation of 

the reality in the geospatial data and are a function of the accuracy and precision of the geospatial 

data (Mowrer and Congalton, 2000; Heuvelink, 1998; Heuvelink et al., 1989).  Accuracy of 

geospatial data refers to the closeness of represented measurements or computations to their 

“true” or accepted values, and precision refers to the level of measurement and exactness of 

descriptions reported in the geospatial data (Gottsegen et al. 1999).  Although recent research 

efforts have improved quantification methods for many types of source errors associated with 

geospatial data in GIS, there is no generally accepted theory for handling error propagation in 

GIS (Heuvelink, 1998).  More importantly, many USGS GIS-practitioners may be aware of error 

propagation during raster processing, but in practice, rarely address or quantify this problem 

because of the lack of a universally available ArcGIS tool or methodology.    

 Error propagation occurs because the output of a raster process or GIS operation is a 

function of the input geospatial data sets, which have inherent source errors that automatically 

affect the computed results (Heuvelink, 1998).   The cause of error propagation is generally more 

complex because source errors are not the only errors that propagate through raster processing.  

Many USGS raster processing applications use simple and complex computational models during 

raster processing (Gurdak and Qi, 2006; Qi and Gurdak, 2004 and 2006).  The model coefficients 

or model structure are subject to estimation error (van Horssen et al., 2002).  Therefore, the 

uncertainty of results from raster processing is a function of error propagation from both source 

errors of geospatial data and the model errors introduced by the GIS model.   

 Stochastic modeling, such as Monte Carlo analysis, has previously been identified as a 

successful method to identify error propagation and quantify uncertainty associated with other 

types of GIS applications (van Horssen et al., 2002; Sklar and Hunsaker, 2001; Phillips and 

Marks, 1996).  An alternative stochastic modeling approach that will likely have widespread 

benefit for quantifying uncertainty associated with raster processing common to USGS 

applications is Latin Hypercube Sampling (Gurdak and Qi, 2006). Latin Hypercube Sampling 

(LHS) (McKay et al., 1979) is a widely used variation on the standard Monte Carlo (MC) 

stochastic sampling method for performing uncertainty analysis.  The MC technique uses simple 

random sampling of the input probability distributions and commonly requires a large number of 

realizations to approximate the input probability distribution.  In contrast, LHS uses a stratified 
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sampling technique that allows distribution of samples drawn to correspond more closely with the 

input probability distribution (McKay et al., 1979).  For the same number of samples, the LHS 

correspondence produces an unbiased estimate of the mean and a smaller variance, as compared 

to MC.  This smaller variance translates in a greater confidence, fewer model simulations, and 

faster computation times necessary for use within ArcMap (Gurdak and Qi, 2006).  This is 

especially beneficial for complex USGS model simulations because running enough simulations 

to properly represent the input distribution may be impractical using MC. 

1.4 Approach 

 To illustrate the utility of the proposed research, the approach is demonstrated on a 

recently developed ground-water vulnerability model of the High Plains aquifer (Gurdak and Qi, 

2006; Qi and Gurdak, 2006).  Because the proposed ArcGIS tool (Objective 1) was not available, 

the stochastic modeling for this demonstration was performed using the proprietary software 

@Risk (Palisade Corporation. 2002).  This software is not coupled with GIS, making it 

cumbersome to integrate the error propagation analysis within raster processing.  This is further 

motivation for the proposed Objective 1; to use a combination of Python scripting and Visual 

Basic (VB) to create a user friendly GUI-based (Graphical User Interface) tool for implementing 

Latin Hypercube Sampling to quantify error propagation during raster processing.  Although the 

following demonstration example of the proposed approach is specific to a hydrologic model and 

a complex raster processing example, the proposed ArcGIS tool will enable the following 

analysis for more general and cross-disciplinary raster processing applications.     

 1.4.1 Demonstration Example 

 Gurdak and Qi (2006) developed a vulnerability model that predicts the probability of 

detecting nitrate concentrations greater than 4 mg/L in ground water of the High Plains aquifer.   

This model was expressed as a ground-water vulnerability map (Figure 1) created using GIS 

raster processing (map algebra).  This research demonstrated that the propagation of input error 

was significant and resulted in spatially variable prediction uncertainty in this ground-water 

vulnerability map.  The approach used to create the resulting prediction uncertainty map (Figure 

2) during GIS raster processing is outlined below.     

 Latin Hypercube Sampling (LHS) was used to develop the uncertainty prediction 

intervals, which defines the error range surrounding the estimates of predicted probability of 

ground-water vulnerability to nitrate concentrations greater than 4 mg/L in ground-water within 

each  80-m GIS grid cell.  The 90% uncertainty prediction interval range was reported (Figure 2), 
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and is defined by the difference between the 5th and 95th percentile of the output probability 

distribution of the LHS modeling, and represents the likelihood that the true predicted probability 

of ground-water vulnerability to nitrate greater than 4 mg/L is within that uncertainty prediction 

interval.  Because the input errors, and thus the propagated model output uncertainty, typically 

are spatially variable (Phillips and Marks 1996), the uncertainty was calculated at each GIS grid 

cell during raster processing and the 95% uncertainty prediction intervals were presented as 

uncertainty maps (Figure 2) to accompany the final vulnerability map (Figure 1).  For each model 

simulation, 1,000 Latin hypercube sampling iterations were run.  As suggested by Phillips and 

Marks (1996), all input probability distributions were assumed normal; each distribution mean 

was assigned as the estimated model coefficient or attributed value for that GIS grid cell.  The 

estimation variance of the input probability distributions was defined by a conservative range of 

source errors for each geospatial data and by the Wald 95% confidence intervals for ground-water 

vulnerability model coefficients during the raster processing.   

 Source errors are typically not available for many geospatial data sets; however, 

reasonable estimates of errors were obtained for the geospatial data used in this demonstration 

example.  As a first approximation, the source errors were estimated to range from 10 to 28% and 

were obtained from various sources.  For example, explanatory variable error equal to 20% was 

used for proportion of irrigated agricultural land, based on Qi et al. (2002) use of satellite imagery 

from Landsat Thematic Mapper (nominal date 1992) and raw National Land Cover Data (NLCD) 

satellite data to classify irrigated and non-irrigated land.  Qi et al. (2002) used ground-reference 

information from 2,500 km2 for comparison against the classified irrigated land data and reported 

an approximate 80% correct classification and 20% error estimate.  Gurdak and Qi (2006) created 

unsaturated-zone lithology GIS datasets by interpolating 56,000 lithologic logs from wells across 

the High Plains using ordinary kriging.  Source error for this lithology data was estimated at 28% 

from the average root-mean-squared prediction error of cross validation during ordinary kriging.   

  A modified method originally presented by van Horssen et al. (2002) to evaluate spatial 

interpolation during ordinary block kriging is proposed as a method to evaluate uncertainty 

contributions from various sources during raster processing, by comparing the relative variance 

contributions.  For the outcome of raster processing at any given GIS grid cell, represented as X, 

the total prediction variance of the raster process, , is equal to the sum of the variance as a 

result of uncertainty in the raster model errors, , and variance as a result of uncertainty in 

source errors of geospatial data, .  The decomposition of the total prediction variance is: 

(X)2σ

)(2
m Xσ

(X)2
dσ
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and the relative variance contribution due to geospatial data source errors (RVCd) is:  
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2

2
d ×

X
X

σ
σ

                                                             (3) 

If uncertainty due to model error and source errors of geospatial data contributes equally, the 

RVCm will equal the RVCd.  RVCm values greater than the RVCd values indicate locations of the 

study area where raster processing prediction uncertainty due to model errors dominates the total 

uncertainty.  This result would indicate the need for improved model development, such as 

additional monitoring wells to better characterize the variability of nitrate concentration in this 

demonstration example.  RVCm values lower than the RVCd values indicate locations of the study 

area where uncertainty due to source errors in geospatial data dominates the total uncertainty. 

Therefore, these locations represent where improved measurement accuracy and precision of 

GIS-based explanatory variables are needed to reduce RVCd and thus improve raster prediction 

uncertainty. 

 Results of this demonstration example illustrate that prediction uncertainty from raster 

processing can be significant and spatially variable (Figure 2).  Prediction uncertainty of the 

ground-water vulnerability model results ranges from 0 to 100%, with generally greater 

uncertainty in the southern and central study area as compared to the northern study area (Figure 

2). Comparison of the RVC values reveals that the model errors constitute the majority of the 

overall raster prediction uncertainty (Gurdak and Qi, 2006).  Spatial patterns of uncertainty 

contributions emerge; prediction uncertainties across the southern and central study area are 

largely due to model errors (i.e., a lack of monitoring wells needed to most adequately describe 

the spatial variability of nitrate concentrations).  A systematic and cost-effective strategy to 
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reduce prediction uncertainty in the demonstration model may be to add monitoring wells to the 

southern and central areas, specifically in areas with the widest prediction intervals, identified in 

Figure 2.  Conversely, the RVCd of the northern study area is significantly larger than RVCm, 

indicating that source errors of geospatial data are greater than errors caused by model errors.  

Therefore, a cost-effective strategy to reduce prediction uncertainty of the northern area would 

entail acquiring more accurate input geospatial data sets (Figure 2).  

 

Figure 1. A ground-water vulnerability 
map; illustrating the spatial distribution of 
the raster-based predicted probability of 
detecting nitrate >4 mg/L in ground water of 
the High Plains aquifer. 

 
 
Figure 2. An uncertainty map; illustrating 
the spatial uncertainty of predictions from 
the ground-water vulnerability model and 
map (Figure 1), which was developed using 
the proposed approach.   

 
1.5 Expected Results and Products 
 Several specific products will be generated from this research. The primary and most 

relevant product to the USGS mission will be the GUI-based tool for ArcMap that provides a 

Latin Hypercube Sampling framework to quantify the propagation of input errors and prediction 

uncertainty during raster processing.  This tool will have widespread and cross-disciplinary 

application.  A conceptual graphic of what this would look like is illustrated in Figure 3.  This 

tool will also provide an option for the Relative Variance Contribution (RVC) calculations, which 

can be used to reduce source error and model error and improve overall confidence in results 
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from raster processing.  A User’s Guide for this tool will be published in a USGS report series.  

In addition, at least two publications are anticipated for publication in peer-reviewed journals. 

Upon completion of this research, an internal project report summarizing major findings and 

results will be written and submitted to the CEGIS.  

 
Figure 3.  A conceptual illustration of the GUI for the proposed ArcGIS tool (tentatively named 
“Raster Error Propagation Tool”) to identify error propagation and quantify prediction 
uncertainty associated with raster processing of USGS models.  

1.6 Significance to the USGS Mission 

 Inherent errors associated with geospatial data propagate through all USGS models and 

calculations that utilize raster processing in GIS, which can result in significant and spatially 

variable prediction uncertainty.  The resulting uncertainties of USGS model predictions bear 

societal consequences and have significant implications for the USGS mission. Prediction 

uncertainty affects how model results are interpreted by scientists, environmental regulators, 

resource managers, elected officials, and the general public.  Thus, the most direct benefit of this 

research to the USGS mission is the proposed tool (outlined in Objective 1 and Figure 3), which 

will provide USGS GIS-practitioners a flexible methodology to quantify error propagation, 

quantify prediction uncertainty, and a method to reduce prediction uncertainty in future iterations 

of raster-based USGS models.   Furthermore, the development and availability of such a tool will 
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increase the awareness of USGS GIS-practitioners of the potential limitations to raster 

processing.  Ideally, spatial metadata should provide GIS users with information about a variety 

of errors that are inherent in the raster data sets.  However, such information is rarely available 

for geospatial data developed and used by USGS GIS practitioners.  Therefore, this proposed tool 

will not only compliment current USGS research activities to better quantify and report error in 

spatial metadata, but will also serve as motivation for all USGS scientists that use GIS raster 

processing to address and quantify the inherent source errors of geospatial data.        
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3.0 Project Support 
 The research outlined in this proposal has a high likelihood of success because of a strong 

collaboration and combined expertise between researchers at the USGS Colorado Water Science 

Center, Lakewood, CO and at the USGS Cascades Volcano Observatory, Vancouver, WA. 

Although this proposal has identified no additional (internal or external) support, the high 

likelihood of success of this research is leveraged by prior internal USGS support from the 

National Water Quality Assessment (NAWQA) Program.  NAWQA support during this past 

fiscal year enabled the research that resulted in the necessary foundation and background of the 

proposed research.  Future NAWQA funding is not available to support the proposed research. 

4.0 Budget Request 

Fiscal Year 2007 
Budget 

Budget amount for 
cost center 8582 

Total 
Year 1 

Personnel Salary 
(Gurdak and Qi) 

81,000 
81,000 

Publication Costs 4,000 4,000 

TOTAL DIRECT 85,000 85,000 

Gross Assessment 
Rate 

58.2%  58.2% 

INDIRECT COSTS 
ESTIMATE 

49,500 49,500 

TOTAL $134,500 $134,500 
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