CHAPTER 8

Coordinate Systems and
Map Projections

E. Lynn Usery, Michael P. Finn and Clifford J. Mugnier

8.1 Introduction

Transformation of geographic data is necessary to support the development of a common
coordinate framework from which geographic information system (GIS) operations, such as
overlay, spatial buffering, and other analyses, can be performed. According to Keates (1982),
we recognize three different types of transformations, the first two of which are mathematical
and, therefore, reversible, and the third is non-mathematical and irreversible. 'The first of
these transformations is from the spherical or ellipsoidal Earth to a plane coordinate system
and is referred to as map projection. The second is transformation from the three-dimen-
sional Earth form to a two-dimensional form. The final transformation is generalization from
the real world to a representation and includes selection, simplification, symbolization and
induction (Robinson et al. 1995). In this chapter, we will focus on the first and second types
of transformations and the mathematical procedures that allow coordinate transformation

to provide common reference frameworks for GIS. We also will briefly examine geometric
correction of map and image data, which uses transformation of data from one plane
coordinate system to another, but also is essential for GIS.

8.2 Geodesy

Transformation of the spherical or ellipsoidal surface of the Farth to a two-dimensional form
falls under the fields of geodesy and map projections; areas of study with well-developed
theory and implementation. In this chapter, only some basic aspects of this theory will be
discussed to achieve the necessary basis for providing common frameworks for GIS. The
study of spherical or ellipsoidal transformations from the Earth’s surface to a two-dimen-
sional representation requires the use of four interrelated concepts: ellipsoid, datum, map
projection, and coordinate system. Fach of these is discussed below.

8.2.1 Ellipsoids P

'The coordinate frame of reference for

a geographic dataset is defined by a b
reference ellipsoid, a representation

of the Earth in which the semi-major E g
and semi-minor axes are of defined a

length (Figure 8-1). The term spheroid
often is used synonymously with
ellipsoid (Snyder 1987; Iliffe 2000);
however, geodesists often use the P

terms separately reserving spheroid for Figure 8-1 Terminology for ellipsoids of revolution:
EE’ is the major axis; PP’ is the minor axis, a is the

semi-major axis and b is the semi-minor axis.

association with a global datum on the
ellipsoid. In this discussion we will use
the term ellipsoid since this is the more common term for the basic figure of the Earth that is
used for map projection. Common ellipsoids and their characteristics are shown in Table 8-1;
a description of the correct use of the ellipsoids listed in Table 8-1 is given in Snyder (1987).
A more complete listing of world ellipsoids is found in Mugnier (2004).
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Table 8-1 Selected official ellipsoids and their characteristics. Adapted from Snyder 1987.

Name Date | Equatorial Radius | Polar Radius | Flattening (f) Use
(a) in meters (b) in meters
GRS 80 1980 6,378,137 6,356,752.3 1/298.257 Basis of NAD 83
WGS 72 1972 6,378,135 6,356,750.5 1/298.26 NASA; Dept. of Defense;
oil companies
WGS 84 1984 6,378,137 6,356,752.3 1/298.257 Basis of GPS
Australian 1965 6,378,160 6,356,774.7 1/298.25 Australia
Krasovsky 1940 6,378,245 6,356,863.0 1/298.3 Soviet Union
International 1924 6 378,388 6,356 911.9 1/297 Remainder of the world
Hayford 1909 6 378,388 6,356 911.9 1/297 Remainder of the world
Clarke 1880 6,378,249.1 6,356,514.9 1/293.46 Most of Africa; France
Clarke 1866 6,378,206.4 6,356,583.8 1/294.98 North America;
Philippines
Airy 1830 6,377,563.4 6,356,256.9 1/299.32 Great Britain
Bessel 1841 6,377,397.2 6,356,079.0 1/299.15 Central Europe; Chile;
Indonesia
Everest 1830 6,377,276.3 6,356,075.4 1/300.80 India; Burma; Pakistan;
Afghan; Thailand; etc.

Since the Earth is properly represented as an oblate ellipsoid (spheroid), the primary
parameters defining the geometric representation are the Equatorial radius (#) and the Polar
radius (4) (Table 8-1, Figure 8-1). Using a and b, we define the flattening factor (f) as:

f=(a-b)la

8.1

The flattening factor is a measure of the oblateness of the ellipsoid and since an approx-
imate factor for the Earth is 1/298, it is not visible to the naked eye even in satellite views.

Therefore, the oblateness shown in Figure 8-1 is exaggerated to allow the visual interpretation

of the ellipsoid shape. We define the first eccentricity (¢), another fundamental measure of
the shape (characteristic) of an ellipsoid of revolution, from the flattening factor as:

e= (2f-f)"

8.2)

We can then define the geodetic coordinates — latitude (¢), longitude (4), and height
above the ellipsoid (4) — as shown in Figure 8-2. Geodetic coordinates may be transformed
to Farth-centered Cartesian coordinates, X, Y, and Z using the following equations:

where

X =(v+h) cos ¢cos 4

Y = (v+ 4) cos gsin 4

Z ={1-eY) v+ blsin @

v =a/(1-e’*sin® @)*

(8.3)
(8.4)
(8.5)

(8.6)

For complete mathematical development of geodetic coordinates and transformations with
Cartesian coordinates, see Mugnier (2004).
The most common ellipsoids currently (2007) used with geographic data are Clarke
1866, World Geodetic System 1984 (WGS 84), and Geodetic Reference System 1980
(GRS 80). The Clarke 1866 ellipsoid is the basis for most maps created in the US before the
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Figure 8-2 Representation of geodetic coordinates, latitude {¢), longitude (4), and height
above the ellipsoid (h).

1980s, primarily because it was designed to fit North America. The Clarke 1866 ellipsoid is
referenced to the Earth’s surface with geodetic measurements and is the basis of the North
American Datum of 1927 (NAD 27). The WGS 84 and GRS 80 ellipsoids were established
by satellite positioning techniques, are referenced to the center of mass of the Earth, i.e.,
geocentric, and provide a reasonable fit to the entire Earth. The WGS 84 datum provides the
basis of coordinates collected from the Global Positioning System (GPS), although modern
receivers transform the coordinates into almost any user selected reference datum.

8.2.2 Datums

A datum is the basis of a coordinate system and defines an initial point. A datum can be local
or global depending on the initial point and whether or not the datum is referenced to an
ellipsoidal representation of the Earth. A horizontal dacum allows specification of latitude
and longitude or x, y Cartesian coordinate locations relative to the initial point. A vertical
datum allows specification of height above or below the initial point. For a global datum,
the initial point is a point on the surface of the Earth, as with NAD 27, which uses the
triangulation station at Meads Ranch, Kansas, as an initial point. Such a datum is referenced
as a geodetic datum, and requires another point to establish a reference angle to align the
coordinate system. For NAD 27, the reference point is the nearby triangulation station,
Waldo in Kansas. For a geocentric datum, established by satellite positioning, the initial
point is the center of the Earth and no reference angle is required (Snyder 1987; Iliffe 2000).
For detailed treatment of datum concepts, including complete mathematical development,
see Mugnier (2004).

8.3 Coordinate Systems

We can define an ellipsoidal coordinate system called the geographical reference system
(Figure 8-3) of latitude (¢) and longitude (4) once we have defined the datum. Note that
cach ellipsoidal system is different based on the choice of datum; thus, a specification of
latitude and longitude location is not sufficient without knowing the datum. Differences

in projected plane coordinates can be hundreds of meters as in the United States where the
difference between Universal Transverse Mercator (UTM) coordinates on NAD 27 and NAD
83 may be as much as 200 m (Welch and Homsey 1997).

With a datum and projection defined, we can then define plane coordinate systems. A
c.oordinate system uses the initial point of the datum in the projection chosen, and estab-
lishes X and Y coordinates based on a grid system of the selected units of measure. Common
plane coordinate systems are based on a set of Cartesian axes usually referenced as X and Y

Manual of Geographic Information Systems

89




90 Chapter 8: Coordinate Systems and Map Projections ‘I

e of approxix

A T v A 2 N Iso is depe
Pt hﬁ‘% iy %, ::L)mple, I
’ ? i \ \\ south 10ng

t‘-‘* 3 Three state
Greenwich ‘f Q extending
% morphic (

Coordinat

\. (as oppose

while new

" coordinat:

Feet, and |

' , establishe:
/' tions. The
T system Z0o
, Lon gitude / ‘ will corre
= / ] necessary
A final
‘

y particulas

o | image sys

N —E (0,0) is a

Figure 8-3 Geographic reference system with coordinates of gRescascs

latitude and longitude. | are expre

usually s:

or Eastings (E) and Northings (N) with units measured in feet or meters, A right-handed howeve.:r,

Cartesian coordinate system defines the origin at 0, 0 and X increases to the right and Y or th_e 1!

increases to the top. Two common US systems for large-scale (high-resolution) applications that is tk

are the UTM, a worldwide system, and the State Plane Coordinate systems of the United and moc
States, its territories and possessions.

In map projection terminology, we define the scale factor at the origin, m , as the I 84 |
maximum scale distortion in the projection. It is the ratio of the scale along a meridian or ‘ 0 '
parallel at a given point to the scale at a standard point or along a standard line that is made Since th:
true to scale (Snyder 1987). The UTM system is based on projections of six-degree zones of | coordin:
longitude, 80° S to 84° N latitude and the scale factor is specified for the central meridian of to plane
the zone.! The scale factor for each UTM zone along the central meridian of the projection as a syst:
is 0.9996, yielding a maximum error of 1 part in 2,500. In the northern hemisphere, the coordin:

X coordinate of the central meridian is offset to have a value of 500,000 meters instead of

0, normally termed the “False Easting.” The Y coordinate has 0 set at the Equator. In the

southern hemisphere the False Easting is also 500,000 meters with a Y offset of the Equator or

False Northing equal to 10,000,000 meters. These offsets force all coordinates in the system to

be positive. The t
'The State Plane Coordinate system, available only in the United States and its territories

model :
and possessions, also uses Eastings and Northings as the coordinate axes. It also is projected format:
in zones to preserve accuracy with State Plane Coordinate zones designated by states. The ek
maximum width of a zone (the part of the Earth surface projected with its own unique (Cormmeti
central meridian) is 158 miles wide, which allows a higher accuracy of transformation from areas, s
the ellipsoid to the plane than the UTM system. The zone width allows maintenance of a m_ | or Sou
— project
1. In the Universal Military Grid System, the polar arcas, north of 84° N and south of 80° S, are called -
projected to the Universal Polar Stereographic Grid with the pole as the center of projection and a | projec:
m_ =0.9994. They are termed “North Zone” and “South Zone.” i scales :
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8.4 Map Projections

ximately 0.9999, or an accuracy of 1 in 10,000. The projection from the ellipsoid
also is dependent on the shape of the state. States with an east-west long axis, Tennessee, for
example, use the Lambert Conformal Conic projection for each zone. States with a north-
south long axis, Illinois, for example, use the Transverse Mercator projection for each zone.
Three states, New York, Florida, and Alaska, use both projections since these states have parts
extending both E-W and N=S. Zone 1 of Alaska uses the Hotine Rectified Skew Ortho-
morphic (RSO) Oblique Mercator projection. Coordinate measurement units of State Plane
Coordinates depend on the datum. For NAD 27, the measurement units are US Survey Feet
(as opposed to the International Foot defined as 610 nm smaller than the US Survey Foot);
while newer systems cast on NAD 83 have an official unit of the meter. Often NAD 83
coordinates also are expressed in feet, but depending on the state, some now use US Survey
Feet, and others the International Foot. Some states, such as Wisconsin and Minnesota, have
established plane coordinate systems for each county specifically for use with GIS applica-
tions. The traditional m_ at the origin, normally associated with the State Plane Coordinate
system zones, is modified for height above the ellipsoid so that field survey measurements
will correspond closely with the county GIS scale factor and thus reduce hand computations
necessary for conversion by the GIS analyst.

A final plane coordinate system of relevance to geographic data synthesis and modeling,
particularly for satellite images and photographs, is an image coordinate system. A digital
image system is not a right-handed Cartesian coordinate system since usually the initial point
(0,0) is assigned to the upper left corner of an image. The X coordinate, often called sample,
increases to the right, but the Y coordinate, called the line, increases down. Units commonly
are expressed in picture elements or pixels. A pixel is a discrete unit of the Farth’s surface,
usually square with a defined size, often expressed in meters. Photogrammetric applications,
however, transform the origin (0,0) of each image to correspond to the center of perspective,
or the intersection of the optical axis of the lens with the image plane. For frame imagery,
that is the center of the image. For pushbroom imaging sensors, different geometry is used
and modeled, and commonly is associated with rational functions.

of appro

8.4 Map Projections

Since the Earth is spherical or, more correctly, ellipsoidal, and usually we work with plane
coordinate representations, geographic data must be projected from ellipsoidal coordinates
to plane coordinates. This transformation is referred to as map projection, which is defined
as a systematic transformation of ellipsoidal coordinates of latitude and longitude to a plane
coordinate representation and mathematically,

X =ﬁ (¢5/Z) (8_7)

y =f; (qﬁ,/i) (8_8)

The transformation is implemented from a “generating globe,” which is a reduced scale
model of the Earth as either a sphere, an ellipsoid, or an “aposphere.” The projection trans-
formation always results in error, with only a single point, circle, or one or two lines where
the scale relation to the generating globe is true. While error always is a result of the trans-
formation, specific properties can be preserved, e.g., angular relations in small areas, polygon
areas, such as continents, or specific directions, such as straight lines away from the North
or South Poles. Angles and area, however, cannot be preserved simultaneously in the same
projection since they are mutually exclusive transformations. Maps with angles preserved are
called conformal projections. Maps with areas preserved are called equal-area or equivalent
projections. Equal area projections also are called authalic, meaning that at any point the
scales in two orthogonal directions are inversely proportional, which forces equal areas.
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One can understand map projection by examining the transformation of spherical coordi-
nates to the geometric figures: cylinder, cone, and plane. A graphical illustration of these
transformations is shown in Figure 8-4. Note that for a cylinder only a single line of contact
exists in a tangent projection (two lines for a secant projection). It is only along this line that
the true scale of the generating globe, and thus along the same imaginary line on the Earth’s
surface, is retained. This line is said to have a scale factor of 1. Any other line is projected
away from the sphere and possesses a scale factor larger than 1. Note that the greater the
distance away from the line of contact,
the Equator in a normal aspect cylindrical
projection, the larger the scale factor and thus
the greater the distortion. A similar line for a
conic projection is shown in Figure 8-4, but
for an azimuthal (zenithal) projection, only
a single point on the tangent plane retains a

scale factor of 1. Complete documentation of =~ =zzz====c== 5 st
map projection theory is available in Snyder - /A{f% R
(1987), Pearson II (1990), Bugayevskiy 5 o s e L 0 D \g
and Snyder (1995), Yang et al. (2000) and Cylinder Cone Plane

Canters (2002). A history of map projection
development is available in Snyder (1993)
and a documentation of characteristics of

Figure 8-4 Geometric figures used for map
projection from sphere or eliipsoid to the
plane. All are shown in the normal aspect with
various projections is provided in Snyder and lines or points where the scale factor=11s

Voxland (1989). highlighted.

8.4.1 Claossification

Projections are classified by a variety of methods including geometry, shape, special
properties, projection parameters and nomenclature (Canters 2002). The geometric classifi-
cation is based on the patterns of the graticule, the grid of parallels of latitude and meridians
of longitude, that result from a perspective projection of the sphere on a cylinder, cone

or plane as shown in Figure 8-4. These projections are referred to as cylindrical, conical,
azimuthal (also occasionally called zenithal) and aphylactic (meaning none of the former).
Although commonly referred to as developable because of the apparent ability to develop
these projections from a perspective projection of the sphere, the spacing of the parallels in
the patterns is derived from differential calculus. This process allows for the preservation of
specific characteristics and minimizes distortion, such as angular relations (shape) or area.
'The geometric classification into cylindrical, conical and azimuthal is not complete since
many projections fit none of these classes. Thus, the classification commonly is expanded

to include pseudocylindrical, projections with straight parallels as with the cylindricals,

but curved meridians; pseudoconical with parallels as curved arcs, as with the conicals, but
with parallel length adjusted so meridians are not straight arcs; and polyconical, with non-
concentric circular arcs for the parallels (Canters 2002). Projections that do not fit these six
classes are referred to as non-conicals. A complete description of these geometric patterns and
their associated names can be found in Lee (1944).

Another common projection classification system is based on the shape of the graticule.
Maurer (1935), cited in Canters (2002), developed a hierarchical system including five levels
primarily based on the appearance of the meridians and parallels. For a description of the
system, see Maurer (1935) or Canters (2002). Starostin et al. (1981) also presented a classi-
fication system based on the shape of the graticule as described in Bugayeskiy and Snyder
(1995). This system is similar to Maurer’s with classes based on the shape of the parallels and
symmetry of the graticule.
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8.4 Map Projections

Subdivisions in Lees (1944) classification are based on special properties. Goussinsky
(1951) also produced a system based on special projection properties. Within his system,
the five classes—nature, coincidence, position, properties and generation—are not mutually
exclusive, but within each class, the types of properties preserved are exclusive. For example,
class 3, position, includes direct, transverse and oblique. Maling (1968) proposed 11 special

roperties to use in map projection.

Tobler (1962) used a general approach based on parametric classification in four groups.
The groups are based on whether or not the plane coordinates x and y are based on a time,
formation of latitude, longitude, or both. Maling (1992) included geometric classes that
relate to Tobler’s parametric classes and the traditional geometric approach. A complete
description of Tobler, Maling and other classification systems is available in Canters (2002).
As is obvious from this brief discussion, map projections can be classified in many ways. The
International Cartographic Association (ICA) Commission on Map Projections has a current
(2006) project to establish 2 standard classification and naming system (ICA 2006).

8.4.2 Suggested Projections

The selection of an appropriate map projection for a given application depends on a variety
of factors, including the purpose the map, the type of data to be projected, the area of the
world to be projected and scale of the final map. Advice on selection is available from a
variety of print and web sources, including Finn et al. (2004) and USGS (20006). In the
discussion below that provides a description of specific projections, we will distinguish
between large-scale (small areal extent) and small-scale (large areal extent) applications. In
GIS, large-scale data sets commonly are projected with a conformal projection to preserve
angles and shape. For such applications, area distortion is so small over the geographic extent
that it is negligible and an area preserving projection is not needed. Whereas there is no
sharp boundary to determine large-scale from small-scale applications, we will use an area
of 150,000 square kilometers, roughly the size of some US states, and a scale of 1:500,000
as a convenient breakpoint. Commonly, large-scale data files are used in GIS applications of
limited geographic extent, e.g., a watershed, a county or a state. The two most commonly
used projections for these scales are the Lambert Conformal Conic and the Transverse
Mercaror, which are the basis of the UTM and most of the State Plane coordinate systems
discussed earlier in this chapter. Later in this chapter, we will describe these projections and
several others used for small-scale applications for areal extents of states, regions, countries,
continents or the entire globe. 'The descriptions arc adapted and dates of presentation and
authors are taken from Snyder and Voxland (1989) unless otherwise noted.

8.4.3 Description of Specific Projections

"The following section details characteristics of a selected set of projections. The name

and creator, or inventor, is detailed for each projection. We outline specific characteristics
including properties preserved, shapes of parallels and meridians, the lines or points of true
scale, the extent of the Earth that can be shown and—for specific cases—particular charac-
teristics that make the projection unique. A graphic representation of each projection is
included with world data and a set of distortion circles plotted on the graphic, usually for
one quarter of the Farth coverage, since the distortion circles repeat the same patterns in
other quadrants. The distortion is plotted as a Tissot Indicatrix (Tissot 1881; Canters 2002).
The intersection of any two lines on the Earth is represented on a map with an intersection
at the same or different angles (Figure 8-5). At almost every point, there is a right angle
intersection of two lines in some direction, which also is shown as a right angle on the
map. All other line intersections at that point will not be at right angles, unless the map

is conformal at that point. The greatest deviation from the correct angle is the maximum
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angular deformation (w). For a conformal map, the value of w is zero. We use plots of small
circles on the maps to indicate distortion; if the circles all remain circles, but change in size,
the map is conformal and does not preserve area. If the circles change shapes to ellipses of
the same size, the map preserves area, but does not maintain angular relations. On maps
with changes in both the shape and size of the circles, neither area nor angular relations are
preserved. The reader should note that in
the projection figures the circles and ellipses
may not appear to be the same area when

A
in fact they are. It is well-known that the
human eye is poor at estimating the relative . ¢

size of geometric symbols, such as circles and
ellipses, and methods to psychologically scale

such symbols have been developed and used
in cartography (Flannery 1971). However, o . . |
in the figures in this chapter, exact areas are Figure 8-5 A graphic illustration of Tissot’s !

d with hological scali dth Indicatrix, right. An infinitely small circle on
used without psychological scaling, and thus  y.o porin (16ft) appears as an ellipse on many

some circles and ellipses will appear to be of  maps. Only on conformal maps will the figure
different size when in fact they are equal. remain a circle on the map.

8.4.3.1 Cylindrical
8.4.3.1.1 Mercator

"The Mercator projection is a cylindrical conformal projection developed by Gerardus

Mercator in 1569. It was developed to show loxodromes or rhumb lines, which are lines of !
constant bearing, as straight lines. The Mercator projection made it possible to navigate a
constant course based on drawing a rhumb line on the chart. The projection has meridians
as equally spaced parallel lines, while parallels are shown as unequally spaced straight parallel
lines, closest near the Equator and perpendicular to the meridians. The North and South
Poles cannot be shown. Scale is true along the Equator (tangent case) or along two parallels
equidistant from the Equator (secant case). Significant size distortion occurs in the higher
latitudes as shown by the circle sizes in Figure 8-6. The Mercator projection was defined for I
navigational charts and is best used for navigation purposes. It is a standard for marine charts.

8.4.3.1.2 Transverse Mercator

'The transverse aspect of the Mercator projection is a projection where the line of constant

scale is along a meridian rather than the Equator. The central meridian, each meridian 90°

from the central meridian, and the Equator are straight lines. Other meridians and parallels

are complex curves, concave toward the central meridian and nearest pole, respectively. The

Poles are points along the central meridian. The projection has true scale along the central

meridian or along two meridians equidistant from and parallel to the central meridian in

the secant case. Conceptually; it is created by projecting onto a cylinder wrapped around the

globe tangent to the central meridian or secant along two small circles equidistant from the

central meridian. It commonly is used for large-scale, small area, presentations; many of the

world’s topographic maps from 1:24,000 scale to 1:250,000 scale use this projection. It is I
the basis of the UTM coordinate system and many of the State Plane Coordinate systems for
states with an elongated north-south axis. The Transverse Mercator projection using the zero
degree longitude at Greenwich as the central meridian is shown in Figure 8-7.

8.4.3.1.3 Lambert Cylindrical Equal Area ‘

The Cylindrical Equal Area projection, first presented by Johann Heinrich Lambert in 1772, [
became the basis for many other similar equal area projections including the Gall Ortho- I
graphic, Behrmann, and Trystan-Edwards. From Lambert’s original projection with the line
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Figure 8-6 Mercator projection with distortion circles (Tissot's Indicatrix) in the
upper right corner, illustrating that size distortion is greater at higher latitudes.

Figure 8-7 Transverse Mercator projection with the central meridian through
Greenwich; Tissot's Indicatrices in the upper right illustrate that scale is
constant along the prime meridian, and how distortion in this projection is
greater for locations farther from the Equator and central meridian.

of constant scale along the Equator, one simply makes the projection secant at two small
circles (parallels). Each of the above projections uses different parallels as the lines of constant
scale. Lambert’s Cylindrical Equal Area projection has meridians that are equally-spaced
straight parallel lines 0.32 times as long as the Equator. Lines of latitude are unequally spaced
parallel lines furthest apart near the Equator, and are perpendicular to the meridians. The
projection maintains equal areas by changing the spacing of the parallels. Significant shape
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distortion, however, resules from maintaining equal areas with the distortion greater in high
latitudes near the poles as shown by the ellipses in Figure 8-8. While this projection is not
often used, it is a standard to describe map projection principles in textbooks. It has also
served as a prototype for other projections, as described earlier in this chapter.
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8.4.3.2 Conical

8.4.3.2.1 Lambert Conformal Conic

The Lambert Conformal Conic (LCC) projection, presented in 1772, shows meridians as
equally spaced straight lines converging at a common point, which is one of the poles. Angles
between the meridians on the projection are smaller than the corresponding angles on the
globe. Parallels are unequally spaced concentric circular arcs centered on the pole of conver-
gence of the meridians, and spacing of the parallels increases away from the pole. The pole
nearest the standard parallel is a poing the other pole cannot be shown. Scale is true along
the standard parallel or along two standard parallels in the secant case. Scale also is constant,
although not true, along any given parallel. The projection is free of distortion only along
one or two standard parallels. Shapes are maintained at the expense of area as shown by the
perfect circles of different sizes in Figure 8-9. The LCC projection is extensively used for
large-scale mapping of regions with an elongated axis in the east-west directions and in mid-
latitude regions. It is the projection for the State Plane Coordinate system for US states with
an east-west axis, such as Tennessee. It also is a standard of the US Geological Survey (USGS)
for State Base Maps at 1:500,000 scale, and for maps of the 48 US contiguous states.

8.4.3.2.2 Albers Equal Area

'The Albers Equal Area projection, presented by Heinrich Christian Albers in 1803, has
meridians as equally spaced straight lines converging at a common point, which normally

is beyond the pole. Angles berween the meridians are less than the true angles and parallels
are unequally spaced concentric circular arcs centered on the point of convergence of the
meridians. Spacing between the parallels decreases away from the point of convergence, the
poles being circular arcs. Scale is true along one or two standard parallels. The scale factor at
any given point along a meridian is the reciprocal of the scale factor along the parallel, thus
preserving area at the expense of shape. This is shown in Figure 8-10 where circles maintain
size but change in shape to ellipses away from the standard parallel. The projection is free of
angular and scale distortion only along the one (tangent case) or two (secant case) standard
parallels. The Albers Equal Area projection is used to show areas of east-west extent in appli-
cations where preservation of area is important. It commonly is used for equal-area maps
for the 48 contiguous US states and is the projection upon which the National Atlas of the
United States (www.nationalatlas.gov) is based.
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Figure 8-9 Lambert Conformal Conic projection preserves shape, as shown by the fact
that Tissot's Indicatrix is everywhere a circle. Variation in the size of circles shows that area
is not preserved.

Figure 8-10 Albers Conical Equal Area projection.
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8.4.3.2.3 Polyconic

The polyconic projection was originated by Ferdinand Rudolph Hassler of the US Coast
and Geodetic Survey for plane table and alidade coastal mapping, and was casy to construct
from simple tables while in the field. 'The projection uses many cones for the projection,

one along cach parallel, hence the name “poly” conic. The central meridian is a straight

line with all others appearing as complex curves. The Equator is the only parallel that is

a straight line, with others as non-concentric circular arcs spaced at true distances along

the central meridian. Scale is true along the central meridian and along each parallel. The
projection is free of distortion only along the central meridian and results in significant
distortion if the range is extended far to the east and west. While the projection preserves
neither area nor shape (termed aphylactic), it was the only projection used by the USGS for
topographic maps until the 1950s. One reason for this usage was the ease of construction
of the projection for quadrangle maps from tables of rectangular coordinates. These tables
may be used from any polyconic projection on the same ellipsoid by applying the proper
scale and central meridian. Therefore, for each quadrangle map the same tables could be
used. These quadrangle maps for the same ellipsoid and for the same central meridian at the
same scale will fit exactly from north to south. They also fit exactly east to west, but cannot
be mosaicked in both directions simultaneously unless only one central meridian is held for
an entire map series. Such variations of aphylactic projections are called quadrillages. The |
Polyconic projection also was used for the Progressive Military Grid for the military mapping |
of the United States in the 15-minute format. This grid later was incorporated into the

World Polyconic Grid that was referenced to the Clarke 1866 ellipsoid, measured in yards,

and used for artillery fire control mapping during World War 11. A graphic illustration of

the projection is shown in Figure 8-11. This projection is not recommended for regional or

global maps since better projections are available.

Figure 8-11 The Polyconic projection applied to a world data set.
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8.4.3.3 Azimuthal

8.4.3.3.1 Orthographic

‘The Orthographic projection, developed by the Egyptians and Greeks by the 2* century
B.C., is a perspective azimuthal (planar or zenithal) projection that is neither conformal

nor equal-area. It is used in polar, Equatorial and oblique aspects, and results in a view of

an entire hemisphere of the Earth, In the polar aspect, shown in Figure 8-12, meridians are
equally spaced straight lines intersecting the central pole. Angles between meridians are true.
Parallels are unequally spaced circles centered on the pole, which is a point. Spacing of the
parallels decreases away from the pole. Other aspects are described in Snyder and Voxland
(1989). Scale is true at the center and along the circumference of any circle with its center

at the projection center. Such circles are parallels in the polar aspect of the orthographic
projection. Scale decreases radially with distance from the center. Distortion circles are shown
in Figure 8-12, which also shows the globe-like look of the projection. The orthographic
projection is essentially a perspective projection of the globe onto a tangent plane from an
infinite distance (orthogonally). It is commonly used for pictorial views of the Farth as if seen
from space.
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8.4.3.3.2 Stereographic N, Fole Plane of Projection
The Stereographic projection, also NN ' N
developed by the Egyptians and Greeks A \/ZA—XT_ / e g

by the 2™ century B.C.,, is a perspective ST “

azimuthal projection that preserves angles, o 7 Equator
i.e., is conformal. As with the Ortho-
graphic projection, the polar, Equatorial
and oblique aspects result in different
appearances of the graticule. The polar

aspect is achieved by projecting from one Figure 8-13 Projection from the South Pole onto
a plane tangent at the North Pole creates the
Stereographic projection.

pole to a plane tangent at the other pole
(Figure 8-13). In this aspect, meridians
are equally-spaced straight lines intersecting at the pole with true angles between them.
Parallels are unequally spaced circles centered on the pole represented as a point. Spacing

of the parallels increases away from the pole. The projection commonly is used only for

a hemisphere. It can be used to show most of the other hemisphere (Figure 8-14) at an
accelerating scale. Scale is true only where the central latitude crosses the central meridian or
along a circle concentric about the projection center, and scale is constant along any circle
with the same center as the projection. The Stereographic projection is used in the polar
aspect for topographic maps of the polar regions. The Universal Polar Stereographic is the
sister projection to the UTM for military mapping. This projection is in current (2007) use
in oblique ellipsoidal form in a number of nations throughout the world, including Canada,
Romania, Poland and The Netherlands (Thompson et al. 1977). This projection generally

is chosen for regions that are roughly circular in shape, and it normally is used only in the
secant case where the scale factor is less than 1.0. Different countries have different mathe-
matical developments that include the Stereographic Double, the Roussithe Stereographic,
and various truncations of the Hristow Stereographic. East and West hemisphere maps
commonly use the Equatorial aspect of the Stereographic projection.

8.4.3.3.3 Gnomonic

‘The Gnomonic projection is a perspective azimuthal projection that is neither conformal nor
equal area. The Greek, Thales, possibly developed it around 580 B.C. The name derives from
the point of projection being at the center of the carth where the mythical “gnomes” live.

It has the unique feature that all great circles, including all meridians and the Equator, are
shown as straight lines. As with other azimuthals, the graticule appearance changes with the
aspect. In the polar aspect, meridians are equally spaced straight lines intersecting at the pole
with true angles between them. Parallels are unequally spaced circles centered on the pole as a
point. Spacing of the parallels increases from the pole. The Equator and opposite hemisphere
cannot be shown. The projection, which can be viewed conceptually as projected from the
center of the globe on a plane tangent at a pole or another point, only can show less than

a hemisphere. Scale is true only where the central parallel crosses the central meridian and
increases rapidly with distance from the center. Distortion circles (Figure 8-15) show that
the projection is neither conformal nor equal area. Its usage results from the special feature
of great circles as straight lines, and thus assists navigators and aviators in determining the
shortest and most appropriate courses.

8.4.3.3.4 Lambert Azimuthal Equal Area

The Lambert Azimuthal Equal Area projection, developed by Johann Heinrich Lambert in
1772, is a non-perspective azimuthal equal area projection. In the polar aspect, meridians are
equally spaced straight lines intersecting at the central pole with true angles between them.
Parallels are unequally spaced circles centered at the pole as a point. Parallel spacing decreases
away from the pole. The projection can be used for the entire Earth with the opposite pole
appearing as a bounding circle with a radius 1.41 times that of the Equator. Scale is true at
the center in all directions and decreases rapidly with distance from the center along radii and
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Figure 8.-15 Th_e Gnomonic projection in the polar aspect. The variation is both size and
shape of the Tissot's Indicatrices show that it does not preserve either.
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102 Chapter 8: Coordinate Systems and Map Projections I

increases with distance in a direction perpendicular to radii. A projected northern hemisphere
with distortion circles showing the equal area preservation, but shape distortion into ellipses
is shown in Figure 8-16. The Lambert Azimuthal Equal Area projection often is used in the
polar aspect for atlases of the polar regions. The Equatorial aspect is used for the Fast and
West hemisphere maps, and is best used for equal-area maps of regions of approximately
circular extent with the projection centered on the center point of the region.

poles
lines
chang
and S
Figure 8-16 The Lambert Azimuthal Equal Area projection preserves area and distorts shape. t};C G
of are
8.4.3.3.5 Azimuthal Equidistant the pe
The (ellipsoidal) Hatt Azimuthal Equidistant projection has origins similar to that of the preser
Roussilhe Oblique Stereographic. Both Philippe Eugene Hatt and Henri Roussithe were to cre
Chief Hydrographers of the French Navy, and both men devised projections for use in the purp¢

hydrographic surveys of near-shore waters and harbors. Because of the prestige associated
with the papers published by both men in Annals Hydrographique in the 19% and early 20 |
centuries, a number of countries adopted one or the other projection for their own grids |
(Takos 1978). The Hatt Azimuthal is merely based on a polar coordinate origin point from |
which clockwise azimuths from north are measured to points. To define the distance to the

points specific series expansions for the geodesic are used (Figure 8-17). The USGS used a

modified Azimuthal Equidistant for geological mapping of Yemen, and in later years, John

D, Snyder used Clarke’s Long-Line Geodesic for the Azimuthal Equidistant USGS series of
Micronesia. !

8.4.3.4 Pseudocylindrical !

8.4.3.4.1 Moliweide '

The Mollweide is a pseudocylindrical equal area projection developed by Carl Mollweide in L
1805. The central meridian is a straight line one-half as long as the Equator, thus forming an
elliptical area of projection for the entire globe. Meridians 90° East and West of the central l

meridian form a circle. Other meridians are equally spaced semi ellipses intersecting at the -
gure

Manual of Geographic Information Systems Mar




ected northern hemisphere
pe distortion into ellipses
ction often is used in the

s used for the East and
ions of approximately

he region.

s area and distorts shape.

similar to that of the
Jenri Roussilhe were
ojections for use in the
he prestige associated

1 the 19% and early 20
n for their own grids
inate origin point from
fine the distance to the
17). The USGS used a
and in later years, John

distant USGS series of

d by Carl Mollweide in

Hquator, thus forming an
and West of the central
pses intersecting at the

Information Systems

‘.
£l

e
[ IR
A
L)
£

b

8.4 Map Projections 103

Figure 8-17 The Azimuthal Equidistant projection in a polar aspect.

poles and concave toward the central meridian. Parallels are unequally spaced straight parallel
lines perpendicular to the central meridian, farthest apart near the Equator with spacing
changing gradually. The poles are shown as points. Scale is true along latitudes 40°44° North
and South and constant along any given latitude. The entire globe projected and centered on
the Greenwich meridian is shown in Figure 8-18. The distortion circles indicate preservation
of area since all are the same size, and distortion of shape since they become ellipses toward
the poles. It occasionally has been used for world maps, particularly thematic maps where
preservation of area is important. Goode (1925) combined it with the sinusoidal projection
to create the Homolosine. Different aspects of the Mollweide have been used for educational
purposes, and the projection was used in The Times Atlas in England.
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Figure 8-18 The Moliweide projection.

Manual of Geographic Information Systems




104

Chapter 8: Coordinate Systems and Map Projections

8.4.3.4.2 Sinusoidal

The Sinusoidal is an equal-area, pseudocylindrical projection developed in the 16™ century
and used by various cartographers in atlases. It also is known as the Sanson-Flamsteed
projection for later users and is the oldest of the pseudocylindrical projections. The central
meridian is a straight line one-half as long as the Equator. Other meridians are equally spaced
sinusoidal curves intersecting at the North and South Poles and concave toward the central
meridian, The parallels are equally spaced straight lines perpendicular to the central meridian.
The Poles are shown as points. The scale is true along the central meridian and along every
parallel. The sinusoidal projection preserves area, but distorts shapes (Figure 8-19), with the
greatest distortion occurring near outer meridians and in high laticudes. The Equator is free
of distortion. It has been used for maps of South America and Africa, and sometimes for
world maps. Tt was combined with the Mollweide by Goode (1925} to create the
Homolosine projection.

AN
IS

172

Figure 8-19 The Sinusoidal projection.

8.4.3.4.3 Robinson

Presented by Arthur H. Robinson in 1963 at the request of Rand McNally and Company,
the Robinson projection is a pseudocylindrical projection that is neither conformal nor equal
area. It uses a set of tabular coordinates rather than mathematical formulas to project coordi-
nates. Robinson created it to improve the world view. The central meridian is a straight line
0.51 the length of the Equator. Other meridians are equally spaced, and resemble elliptical
arcs concave toward the central meridian. Parallels are equally spaced straight parallel lines
between 38° North and South, with space decreasing beyond these latitudes. The poles are
shown as lines 0.53 times the length of the Equator. Scale is true along the 38° latitudes
North and South, and is constant along any given latitude. There is no point completely free
of distortion, and both size and shape change as shown by the circles in Figure 8-20. The
Robinson projection is used for world maps by Rand McNally in their Goodes World Atlas
(Veregin 2006).. The National Geographic Society adopted it for world maps for a time
during the 1990s.

8.4.3.5 Other Projections

Regions that are not predominately elongated along the cardinal directions, not circular

in shape, and too large for local projections present a conundrum to the cartographer and
the geodesist. The Transverse cylindrical of Professor Rosenmund for Switzerland (Mugnier
2001) and the Oblique Mercator of French General Jean Laborde for Madagascar (Mugnier
2000) were based on double projections that utilized an equivalent sphere. Laborde’s devel-
opment is based on the Gauss-Schreiber Transverse Mercator projection. Hotine (1946,
1947) first introduced the development of the oblique Mercator on the ellipsoid through the
“aposphere,” a surface of constant curvature and thence to the plane. Hotine’s original imple-
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mentation was for the peninsula of Malaya and the island of Borneo, but this projection also
has been used as a grid in numerous areas elsewhere, including Alaska Zone 1 of the State

Plane Coordinate Systems on both NAD 27 and NAD 83.

T
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Figure 8-20 The Robinson projecfior_\.-

8.4.3.5.1 Van der Grinten
The Van der Grinten projection (also called Van der Grinten 1), presented by Alphons J.

van der Grinten of Chicago in 1898, is a polyconic projection that is neither conformal nor
equal area. The projection has a straight central meridian whereas other meridians are circular
and equally spaced along the Equator, concave toward the central meridian. Parallels are
circular arcs, concave toward the nearest pole, with the Equator as a straight line exception.
The Poles are points. Scale is true along the Equator and increases rapidly with discance

from the Equator. The projection has significant distortion near the poles (Figure 8-21).

The projection encloses the entire world in a circle. The US Department of Agriculture, the
USGS, and the National Geographic Society ate a few of the organizations that have used it
for world maps.

Figure 8-21 The Vgﬁ dg Grinten projection.
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8.4.3.5.2 Cassini-Soldner

The Cassini-Soldner projection is a relic of the 19" century mapping efforts of the Europeans
and their colonies (Clark 1973; Iliffe 2000). Largely replaced by the Transverse Mercator
Projection, the Cassini-Soldner occasionally is still found in former British colonies that
describe cadastral records and/or hydrocarbon exploration/production concessions with this
grid. The Cassini-Soldner is an aphylactic projection also in that it is neither conformal nor
equivalent. Survey computations on the developed surface are especially problematic, particu-
larly with respect to the conversion between geodetic distances measured on the ground, and
grid distances measured on the developed surface. The Cassini-Soldner projection centered
over the zero degree latitude and longitude is shown in Figure 8-22.

Figure 8-22 The Cassini-Soldner projection centered on zero degrees latifude and longitude.
Note that only a part of the Earth appears in the projection.

8.4.3.5.3 Space Oblique Mercator

The Space Oblique Mercator projection, conceived by Alden P. Colvocoresses in 1973 and
developed mathematically by John P. Snyder in 1977, was designed to map the ground
track of a satellite and maintain conformality. Meridians and parallels are complex curves

at slightly varying intervals to account for the motion in time of the satellite (Figure 8-23).
The Poles are points. The scale is true along the ground track, but varies about 0.01 percent
within the normal sensing range of the satellite. There is no distortion along the ground
track and distortion is constant along lines of constant distance parallel to the ground track.
The projection is conformal to within a few parts per million for the sensing range. The
projection is used for satellite images including Landsat and others.
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Figqre 8-23 The Space Oblique Mercator protection conceived by Alden Colvocoresses and
derived mathematically by John P. Snyder.

8.5 Plane Coordinate Transformation

As GIS users are well aware, geographic data often exist in a plane coordinate system, but not
in the particular plane system we wish to use. If the datum, projection, and associated param-
eters are known, the data can be reprojected to the desired projection and coordinate system.
In this situation, the data are first inversely projected to the geographic reference system of
latitude and longitude, and then forward projected to the desired system. This reprojection
operation allows exact control of the transformation, and the accuracy and errors involved.
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The data are frequently in plane coordinates, but the datum or projection is not known.
An example is a photograph or image that exists in an image coordinate system that we want
to transform to UTM to match other data. Other examples are digitized or scanned maps
and images. For these data, an approximate transformation to a set of known coordinates
can be performed. A common approach is to locate ground control points (GCPs) in the
image and a reference system and develop a polynomial transformation between the two.
Coordinates in the image system can be located visually and measured directly on a computer
screen. Coordinates of the same points in a reference system can be located from a map or
in the field with a GPS receiver. The mapping of points between the two systems and an
explanation of the process for establishing the equations to be solved for the transformation
is illustrated in Figure 8-24 and 8-25, respectively. The mapping in Figure 8-25 shows the
process to transform an image scanned at 1,024 by 1,024 pixels to UTM coordinates on
NAD 83. The root-mean-square error of the transformation is £0.69 m. Note that in the
example a simple first order polynomial is used, which is sufficient for most current (2007)
geographic data sets. Higher order polynomials can be used to eliminate higher distortion,
but require larger numbers of control points. The minimum and recommended numbers of
GCPs for polynomials of degrees 1-5 are shown in Table 8-2.

The described transformation between plane coordinate systems can be used wich point
(vector) data or image (raster) data representations. For vector data, the transformation is
complete since attributes are associated with the transformed points, lines, or polygons.

For raster data, since we are transforming discrete cells, we must determine how the new

cell values will be assigned. For these data, we must resample the original digital numbers
(DNs) or raster cell values to match the new geometry of the transformed image. A graphic
example of the concept of this resampling is shown in Figure 8-26. It is shown as an inverse
resampling, from the output coordinate space to the input coordinate space, since this is the
common implementation. The exact raster organization desired, i.e., the number of rows,

the number of columns, and the pixel size is assumed, and the image is mapped from this
assumed space back to the original coordinate space. Once the exact location in the input
space is known, the appropriate DN or raster cell value is placed in the output coordinate
(pixel) position. Common resampling approaches are nearest neighbor (assume the value

of the closest pixel), bilinear interpolation (a distance-weighted average of the four nearest
values), or cubic convolution (a
distance-weighted average of the
16 nearest pixels). Details of these
resampling methods are available it

in a variety of sources (Jensen + 7a\
20053). Steinwand et al. (2005) have
developed resampling techniques

for thematic (categorical) data that + A A

allow users to select minimum,

Reference System
{Map or GPS Points}

maximum, modal and other g

statistical or user-specified values

from those available for the sample + GCP Input

area in the input raster dataset. The A GCP Reference

techniques provide significantly Figure 8-24 Mapping of points between two raster

better output results than tradi- GIS or image and map systems using a series of
tional nearest neighbor methods. ground control points [GCPs) (Welch and Usery 1984).
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jection is not known.
1 2
‘ate system that we want o (331785, 5198825) (360343, 5198601) o 1 2
ized or scanned maps +(10,12) (1020, 12) +
f known coordinates
»oints (GCPS) in the Image or Map to be
on between the two. transformed
d directly on a computer
ocated from a map or
two systems and an 3 4
for the transformation *(8,1020) (998,996) +
igure 8-25 shows the 3 150035 51762404
'TM coordinates on o (331874, 5175925) ( ’ )e
' m. Note that in the
r most current (2007) X' = agtax+ayy
ate higher distortion, Y' = bytbx-+b,y
smmended numbers of .
From the first point: From the second point:
1 be used with point 331785 = agtar(10)+ax(12) 360343 = agta;(1020)+as(12)
the transformation is 5198825 = byt (10)+by(12) 5198601 = bytb (1020)+by(12)
lines, or polygons. o '
. From the third point: From the fourth point:
-rmine how the new
sinal digital numbers 331874 = agtay(8) +ax(1020) 359938 = agta;(998)+2;(996)
rmed image. A graphic 5175925 = bytbi(8)+5,(1020) 5176240 = bo+bi{998)+52(996)
i n inverse . .
tis shown. e hi V h Solve for the unknowns ag, 1, az, by, by, by by simultaneous solution with least squares
€ space, since this is the adjustment. Apply coefficients to all other points in the input image to create complete transformed
the number of rows, geometry of the image. For raster images, resample to generate new gray level or color values.
- is mapped from this Figure 8-25 Implementation method for polynomial fransformation for image or map data.
Sl . g o
location in the input
he output coordinate Table 8-2 Number of GCPs for plane coordinate transformation
or (assume the value Polynomial Order Minimum Number of GCPs Recommended Number for
1ge of the four nearest Effective Least Squares
1 3 6
2 6 10
AN A 3 10 15
A 4 5 21
5 21 30
A
A A !
Reference System i o 4 o+ o+ \ A A A A A
{Map or GPS Points) R @ ., . & . s a® & a 4 4
i L a_ A A 4 A A
arence T A A RWA A A 2
fs between two raster N 6 8 8 A p &
ms using a series of e i + 3+ A A A A A A& &
) (Welch and Usery 1984). e, . s A A A A A &
+ 4 +
Input Output ;
+ Pixel Centers 4 Pixel Centers

Figure 8-;6 Resampling example using nearest neighbor concept from the output image
Mmapped into the input image.
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8.4.1 Three-Dimensional to Two-Dimensional Transformations

Three-dimensional (3D) and two-dimensional (2D) transformations occur with geographic
data since the surface of the Farth is not a perfect sphere or ellipsoid. Thus, data acquired
over a 3D surface must be transformed to a plane representation. The transformation process
is shown in Figure 8-27. As with map projection, this transformation is completely mathe-
matical and model error sources can be determined exactly. Figure 8-28 provides an image
example. A photograph of the Tenth Legion, Virginia, area is shown in Figure 8-28a and the
same photograph after it has been orthorectified to remove distortion resulting from tilt and
relief is shown in Figure 8-28b. Note that roads on the photo appeared curved because of
terrain relief, but in the orthophotograph the roads appear straight. The procedures for these

transformations are the subject of photogrammetry and are explained in complete derail in
the ASPRS Manual of Photogrammetry (McGlone 2004).

Photo

\/\_'_\/“\_/—
3d surface

2d representation

Figure 8-27 Graphic example of the 3D fo 2D fransformation process.

Aerial Photograph Digital Orthophoto

Tenth Legion, VA Tenth Legion, VA

3!

Figure 8-28 Photo example of the 3D to 2D fransformation. Note the road appears cur
the (left) uncorrected image and straight in the (right) ferrain-corrected image.
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8.6 Conclusions

8.6 Conclusions

Coordinate transformations are the basis of achieving a common frame of reference for
geographic information analysis in GIS. The requirement of a common ellipsoid, datum,
map projection, and finally plane coordinate system make it possible to use plane geometry
for all types of spatial overlay and analysis. The methods of transformation are many and
varied, and can be accomplished as rigorous mathematical transformations or as simple
approximations. ‘The accuracy of the resulting analysis, however, can only be as good as

the accuracy of the data. Geographic data projection from the ellipsoidal Earth to a plane
coordinate system always results in error in area, shape, and other properties. With appro-
priate selection of a projection, the user can preserve desired characteristics at the expense
of others. In this chapter, basic concepts of coordinate systems and map projections were
examined. For a more in-depth treatment, the reader is referred to the texts and sources refer-
enced in this section and listed below.
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