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ABSTRACT
One method for working with large, dense sets of spatial point data is to aggregate the measure
of the data into polygonal containers, such as political boundaries, or into regular spatial bins
such as triangles, squares, or hexagons. When mapping these aggregations, the map projection
must inevitably distort relationships. This distortion can impact the reader’s ability to compare
count and density measures across the map. Spatial binning, particularly via hexagons, is
becoming a popular technique for displaying aggregate measures of point data sets.
Increasingly, we see questionable use of the technique without attendant discussion of its
hazards. In this work, we discuss when and why spatial binning works and how mapmakers
can better understand the limitations caused by distortion from projecting to the plane. We
introduce equations for evaluating distortion’s impact on one common projection (Web
Mercator) and discuss how the methods used generalize to other projections. While we focus
on hexagonal binning, these same considerations affect spatial bins of any shape, and more
generally, any analysis of geographic data performed in planar space.
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1. Introduction

Maps present clear value for understanding spatial
relationships and patterns. On the one hand, there
are base maps that focus on topography, hydrology,
and natural resources. On the other hand, there are
thematic maps that convey relationships between topi-
cal phenomena. In both cases, the communication
relies on interpretation of spatial relationships, and so
the success of the map depends on the accuracy of
placement and symbolization within that space. It is
both a benefit and a hazard that maps reduce the
complexity of real-world distributions into point, line,
polygon, and raster representations. While this reduc-
tion simplifies patterns for interpretation and commu-
nication, the mapmaker must be careful to consider
how simplification affects accuracy of interpretation.
Examples of simplifications include mathematical or
statistical manipulations of the raw data, regrouping
(classifying), and any analyses involving measurement
or use of area, distance, or direction between data
elements.

The work reported here highlights issues in sim-
plification of large N-point data sets into spatial bins.
In this work, we focus on not only how spatial

binning can improve our ability to analyze spatial
patterns for large and dense point data sets, but
also how it may hinder a reader’s ability to interpret
the meaning in the transformed data. We emphasize
the importance of geometrical distortion of space as
a function of map projection transformations, as this
is the problem with the least scholarly discussion in
binning, has the greatest potential impact on visual
and spatial analysis, and has been largely ignored in
discussions of vector spatial binning for point-based
geographic data. While we are focusing on issues
related to aggregation of point data, it would be
remiss to ignore mentioning to the reader the small
but interesting overlap with the corpus of literature
on pixel distortion for raster reprojection (e.g.
Steinwand, Hutchinson, and Snyder 1995; Mulcahy
2000; Usery et al. 2003; White 2006). Though the
aggregation problem in vector spatial binning is
quite different, it is interesting to consider the chal-
lenges of resampling that result from raster projec-
tion transformations.

While we cover general implications of map projec-
tion on this type of data manipulation, we will focus on
one particular projection, the Web Mercator. For better
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or worse, we are in an era of general purpose thematic
mapping using the Web Mercator. While not the only
projection used in modern mapping, it is the projection
of most Web mapping systems (e.g. Google Maps, Bing
Maps, ArcGIS Online, Yahoo! Maps, MapQuest, etc.)
that allow users to add their own thematic content.

The goal of this article is to explain when and why
spatial binning is appropriate for geographic data, and,
importantly, what trade-offs mapmakers need to
understand in order to aggregate in bins and to com-
municate the results appropriately.

We approach the discussion with the following con-
siderations about projections:

● For projections that are equal area, it is possible to
preserve area in spatial bins. However, these bins
will not be regular (same shape) on the sphere.

● For projections that are not equal area, regular
spatial bins in projected space will not express
regular area measure. Therefore, the mapmaker

must decide whether the bins will be used to
present comparable measures for densities (quan-
tity per unit area on the sphere) in the resulting
bins or if they will be used to present quantity
(Figure 1).
○ If the bins measure density, then the reader

may be hindered in estimating quantity because
the spherical areas of the bins will vary across
the map while the size and shape of the bins
remain the same. If two bins show the same
density measure, for example, readers may be
led to also interpret counts as being the same
when they may in fact differ drastically.

○ If the bins measure quantities, then the ability
of a reader to compare densities may be hin-
dered for the same reasons; the planar area of
the bins differs from the spherical area, whereas
a naive translation of density would assume
that the regular bins represent equal areas.
Since this is false, except for equal-area projec-
tions, the presumed density would be incorrect.

Figure 1. Regular spatial bins on a nonequal area projection (Web Mercator in this example) present challenges for users to
appropriately estimate both quantity and density in the same visualization. If the reader assumes that the spatial bins represent the
same area, the assumed density values will also be equivalent for both locations (left column). However, if spherical area is (more
appropriately) used to calculate density, as seen in the right column, it is apparent that the density is different.
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● For any projection, it is possible to create irre-
gular spatial bins that reflect true area on the
sphere. The irregular bins can be designed in
such a way as to preserve both density (quantity
per unit area on the sphere) and quantities.
However, the extent of the bins will vary when
projected onto a planar map, negating what we
feel is the visual benefit of the regular bins
(Figure 2). Even with this practice, how readers
might interpret the data is an open question.
Consider an area in the high latitudes that has
been greatly expanded on the Web Mercator in
order to show the same amount of area on the
globe as a region near the equator. If the hue
used to represent the quantity is the same in
both regions, then the represented density
would also be the same. And yet the reader
would see a vastly expanded area full of color
and might thereby infer greater quantity by
thinking the larger bin meant larger ground
area.

● The map reader may not identify or compensate
for distortion introduced by the map projection,
leading the reader to assume that equal count
implies equal density even when bins of the
same size on the plane represent different sizes
on the globe.

2. Spatial binning

Spatial binning is a method of aggregating individual
point locations into polygonal regions. These polygonal
regions may be irregular and are often political bound-
aries (e.g. census tracts or countries) or a tessellation of
regular polygons. Spatial binning using irregular poly-
gons is one of the most common forms of mapping, in
which we create choropleth maps by counting discrete
entities or deriving a new measure for each polygon
from the raw data. Examples are population density or
median household income for a census tract as derived
from individual income combined with average house-
hold size.

Binning using regular polygons appears in the lit-
erature from the early 1980s at latest, with Chambers
et al.’s (1983) sunflower plots and Carr et al.’s (1987)
discussion of hexagonally binned plots for large-N data
sets in scatterplots. Carr, Olsen, and White (1992) were
possibly the first to discuss explicit application of hex-
agonal binning for spatial data aggregation and sam-
pling. Since this time, there has been little scholarly
discussion of theories of hexagonal binning for spatial
and visual analysis. However, numerous examples of
their use appear in recent academic literature and pop-
ular media. In the academic literature, discussion has
focused on using rectangular and hexagonal bins to
aggregate data for analysis or display (Schipper et al.
2008; Hoffmann et al. 2010) as well as for constructing
sampling frameworks (Birch, Oom, and Beecham 2007;
Elsner, Hodges, and Jagger 2012). Popular media
examples largely revolve around the use of hexagonal
grids for binning (for instance, Field 2015; map of
deaths in the Grand Canyon) or as “tile grid” maps
(see DeBelius 2015 for discussion), as well as how-to
guides (Field 2012; Graser 2012) justifying and demon-
strating the method.

In the remainder of this section, we discuss the
nature of geographic phenomena and data appropri-
ate for spatial binning, as well as the attending bene-
fits and hazards that may hinder communication of
results.

2.1. Why use regular spatial bins?

Use of regular spatial bins has three primary goals. The
first is to simplify a data set, which may help improve
rendering speed. With sufficiently large data sets, it
may be quicker to store and draw a small number of
polygons than it is to render the individual points.
Because points may not be individually distinguishable
anyway, bins provide a second benefit in aiding visual
communication. Done properly, binning can permit

Figure 2. Icosahedral Snyder Equal Area aperture 3 Hexagon
bins at resolution level 3 shown in the Web Mercator
projection.
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the reader to make reasonable count or density esti-
mates that otherwise would be impossible because
point symbols have coalesced or overlapped (e.g.
Figure 3). Binning is also useful for simplifying pat-
terns in which mark overlap may not be excessive by
showing a smoothed surface of aggregated values
rather than requiring the reader to mentally aggregate.
The third goal is to provide a regular, gridded frame-
work for additional analysis or comparison between
data sets (e.g. as seen in Data Team 2015). Spatial
bins can also be used as a framework for sampling
(e.g. White, Kimerling, and Overton 1992); the same
concerns about accuracy in spatial binning apply for
this use case.

Regular spatial bins displayed on a map are effective
for visual analysis because they allow us to hold shape
and spacing in the symbols constant, eliminating irre-
levant variation in the symbols. This brings the reader’s
attention to the visual encodings, such as size or color,
which indicate variation in the relevant measure (see
Figure 4). Though any of three different shapes (trian-
gle, rectangle, or hexagon) can be tiled for regular
binning (tessellation), hexagons appear to be a favorite
shape because they are considered more attractive
(Carr et al. 1997; Carr 1990), show lower density

estimate bias than squares or triangles (Scott 1988),
are less likely to line up with regularly spaced and
linearly shaped cultural features (Carr, Olsen, and
White 1992), and are less likely to lead readers to “see
regularity where there is none” (Wilkinson 2005, 142).

2.2. For what type of geographic phenomena and
data is spatial binning appropriate?

Spatial binning is appropriate for aggregation of point-
based measures where it is important to maintain the
proximity of the measure to the location of that mea-
sure. When aggregating into regular polygons, the fact
that they are all the same size implies that they function
as a density measure, however, that may be mere
appearance, not necessarily a representation of actual
density. We will come back to this important point in
the next section. This type of aggregation is most
appropriate for geographic phenomena that vary rea-
sonably smoothly over space and that fit somewhere
between discrete and the middle of the discrete-con-
tinuous continuum, as defined in MacEachren and
DiBiase’s (1991) model of geographic phenomena.

As discrete data, points can then be aggregated for
visualization as counts (or other calculations such as

Figure 3. Taxi cab pickup locations in Manhattan as raw point locations (left) and as counts after being binned into a hexagonal
grid (data from Andres Monroy – http://www.andresmh.com/nyctaxitrips/).
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sum of an attribute) within each of the spatial bins. This is
the same process of aggregation as any point data into
polygonal geographies (e.g. sum of population within a
census tract); though since the polygons are the same size,
they become a density cue rather than purely a count.

Though there are examples of spatial binning used
to visualize aggregation of nonpoint data (e.g.
Schipper et al. 2008; for polygonal habitat regions;
Elsner, Hodges, and Jagger 2012; for hurricane
paths), spatial binning may not be the most appro-
priate method for clearly communicating these pat-
terns of spatial density. For such data, binning into
regular polygons is more complicated because the
process requires preprocessing to identify what to
add, and to quantify how much of each line or poly-
gon to add, into each bin. Decisions made to quan-
tize the data, such as ignoring slivers to minimize
overcount, might obfuscate the meaning of the mea-
sure for the reader (though we have not tested this).
There is also the potential for a reader to presume an
even distribution of the phenomenon when, in fact, it
has high variability. For instance, when mapping
species habitats, do we assume the probability of
finding an example of the species as constant across
the entire polygon?

2.3. Comparison of spatial binning to other
related mapping methods

Spatial binning is not the only cartographic method
that can be used to analyze and visualize point density.
Several other methods are in use; however, they have
subtle and not-so-subtle differences. While other meth-
ods also help simplify the display, they are not appro-
priate for all geographic phenomena. In this section, we
evaluate how well these other methods meet the goals
we defined for spatial binning.

2.3.1. Choropleth
A popular choice, choropleth maps constrain counts of
points to irregular polygons that were likely defined
independently of the phenomenon. They are best used
for phenomena distributed evenly and continuously
across an enumeration unit and that change abruptly
along the borders of the enumeration unit. When used
for aggregated count data, they are most appropriate
when enumeration units are similar in size or when the
count has been normalized to account for variation in
other attributes of the enumeration unit (Slocum et al.
2009). Spatial binning with regular polygons and the
irregular polygons of choropleth maps is similar; how-
ever, regular polygons have a few advantages. For one,

Figure 4. Hexagonal bins color encoding only (left) versus size and color encoding (right).
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regular polygons are not tied to political boundaries.
That allows us to show smoother patterns of change
over space, which is important for phenomena that are
not naturally constrained by anthropogenic bound-
aries. Also, the size of regular polygon bins can be
adjusted to provide greater control over the represen-
tation of the data points’ distribution, which mitigates
masking uneven distributions of the mapped phenom-
enon. Finally, regular polygons provide a uniform grid
of enumeration units for either visual analysis or spatial
analysis – though possibly not both. We discuss this
last matter in more detail later in the article.

2.3.2. Dot maps
While choropleth maps constrain counts to polygons, dot
maps are not constrained in this way; they can use arbi-
trary regions of any complexity to aggregate and show
distribution. In constructing the map, the mapmaker must
decide how to distribute the smoothly changing phenom-
enon realistically, choosing enumeration units for that
purpose and choosing a fixed quantity of the phenomenon
that each dot will represent. This technique differs from
hexagonal binning in that the enumeration units are not
evident to the reader and are not uniform. Therefore, the
reader cannot infer real locations for the phenomenon,
with the distance of a particular instance of the phenom-
enon to its dot being arbitrary and potentially large.

2.3.3. Heat maps
With heat maps, the input point data are the same as
for hexagonal bins, but the output goal is to generate a
continuous surface of density by filling in gaps between
points with interpolated values and removing the
attachment of points to exact locations. Geographic
heat maps or kernel density estimation maps – as
opposed to statistical heat maps as discussed by
Wilkinson and Friendly (2009) – use interpolation to
transform discrete point data into a continuous density
surface. Each location is assigned a measure represent-
ing the count of points found within a fixed radius.
This method provides a smooth representation of den-
sity for a phenomenon across the entire surface but
removes the original data points from the visualization.
For large data sets, creation of heat maps becomes
computationally intensive (Shook et al. 2012).

2.3.4. Isopleth maps
Another option is to create a kernel density surface or
to interpolate a surface from a measure at point loca-
tions and then translate this into a set of contour lines
that connect locations of equal measures. The contour
lines are isopleths (lines of equal value), so the map
itself is known as an isopleth map, although the terms

isopleth and contour are often used interchangeably
(Robinson, Sale, and Morrison 1978). While this also
provides a smoothed representation for the phenom-
enon, similar to heat maps and spatial binning, the
resulting map, once again, is more computationally
intensive. More importantly, this generates new values
between known points as a consequence of interpola-
tion, implying a truly smooth, continuous change of
attribute, as opposed to simply aggregating values
based on their containment within a bin.

The literature describes other mapping methods,
such as proportional symbols using true or conceptual
locations, dasymetric, or chorodot (MacEachren and
DiBiase 1991). However, as they pertain to spatial
bins, we see only nuances in these other methods
beyond the contrasts already discussed above.

2.4. Creating spatial bins

Spatial binning seems like it should be simple: create a
grid of triangular, rectangular, or hexagonal bins on the
map and then count the points contained by these bins.
It is a mere point-in-polygon exercise. However, it
turns out that map projections cause problems, parti-
cularly at small cartographic scale. Essentially, we have
to decide whether the bins are regular polygons on the
sphere (or ellipsoid or geoid) or on the plane. The
decision here substantially impacts the resulting
analyses.

Unfortunately, as spatial binning (particularly hex-
agonal binning) has become more popular in recent
years, the focused discussion of these problems from
the 1990s (e.g. White, Kimerling, and Overton 1992;
White et al. 1998; Kimerling et al. 1999) has dissipated.
The current discussion seems to be focused largely in
the popular media on how hexagonal binning can
provide accurate visual representation for analysis of
geographic data density (e.g. Smith 2012; Briney 2014).
Guidance on how to create and use spatial bins tied to
GIS software (Field 2012; Graser 2012), statistics
packages (Carr 2015; SPSS, n.d.; Wicklin 2014), and
Web mapping libraries such as d3 (Bostock, Ogievetsky,
andHeer 2011) and cartoDB (cartoDB, n.d.) provide little
to no commentary on what the spatial bins mean to a
reader or how they could be misleading. Additionally, the
popularmedia documentation has typically just described
hexagonal binning as a method for simply and effectively
representing complex data sets so that they are easier for
users to understand (e.g. Smith 2012; Briney 2014) with-
out concern for the visual analysis challenges introduced
by nonequal area bins. In our searches, we have found few
sources in the popular media that even mention projec-
tion, although Nelson (2013) nicely reminds blog readers
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to use an equal-area projection because “this is pretty
much the whole point.”

Spatial binning has been subjected to little criticism in
the academic literature beyond the previously mentioned
work by White et al. (1998; White, Kimerling, and
Overton 1992), and a few efforts to minimize the projec-
tion effects for planar binning using hexagon-based dis-
crete global grid systems. Most notable in influencing the
type of bins used in scholarly literature may be the work
by Sahr, White, and Kimerling (2003) to construct the
Icosahedral Snyder Equal Area aperture 3 Hexagon
(ISEA3H) geodesic discrete global grid (for application
examples, see Strassburg et al. 2010; Schipper et al. 2008;
Hoffmann et al. 2010). We discuss this and a few other
spherical binning methods in the next section.

2.5. Problems with bins in spatial and visual
analysis

To draw attention to the problems caused by map
projection that may undermine spatial bins for aggre-
gating and visualizing data, we consider the case of
hexagonal binning for display in Web maps using the
Web Mercator coordinate system. This is not an arbi-
trary use case; in fact, hexagonal binning on Web maps
is a practice we see frequently and is one that is parti-
cularly tricky to do well.

As we mentioned earlier, regular spatial bins on a map
are effective for visual analysis because they hold shape
and spacing in the symbols constant. This works best
when the bins are, in fact, regular on the plane in large-
scale mapping cases (Figure 3). In order to maintain this
regularity of bin shape and size on the plane, we must
compromise the shape or size of the bin, or both, on the
sphere. Representation of surface area is particularly
important to consider because if the area measure on
the sphere varies while the bin’s planar area holds con-
stant, then a reader’s ability to assess the density will be
compromised. To demonstrate this, we show the impact
of two different – but common – methods for creating
hexagonal bins: regular planar bins defined with pro-
jected map coordinates x, y (meters in Web Mercator)
and bins based on “spherical units” as defined on a plane
(e.g. degrees of latitude and longitude in the equirectan-
gular plate carrée projection). The first of these methods
creates a regular lattice of hexagonal bins on the plane
such that they appear to be the same size and shape and
yet the territories they represent on a sphere differ in area.
The second method is a naive attempt at generating
regular bins on a “sphere.” This method treats spherical
coordinates as planar, a practice that approximates reg-
ularity for neither spherical nor planar bins. Additionally,
we briefly discuss a third method to create bins on the

sphere and then translate these to planar coordinates.
Basic properties of these methods are summarized in
Table 1.

2.5.1. Defining planar bins with projected units
For planar bins, coordinates on the x- and y-axes are
treated as true distances. From that, bins of equal side
length are generated. This gives a regular lattice of
equal shape and size hexagons. On the sphere, how-
ever, these bins can represent very different areas
depending on the projection, the spatial extent of the
data (with larger geographic areas being more likely to
present substantial deviation in area), and the map
scale. In Web Mercator coordinates, this means that
the bins farther from the equator cover smaller and
smaller ground areas even while all having the same
projected area. This occurs because the scale factor in
the Web Mercator projection increases with latitude,
wherein scale factor is proportional to secant of latitude
(Snyder 1987). This leads to an apparent reduction in
the density of data at higher latitudes when the points
being binned are distributed evenly (e.g. Figure 5).

2.5.2. Defining planar bins using degrees of latitude
and longitude
Another dubious technique we have encountered is to
define bins using degree “units” to define hexagon side
length, with the length of a degree of longitude and

Table 1. General properties of global-scale regular spatial bins
defined with different methods.

Mapped space
(plane) Spherical space

Same
size

Same
shape

Same
size

Same
shape

For regular bins defined on
the. . .

Plane – with equal side length as
defined by

Map units, on an equal area
projection

✓ ✓ ✓ -

Map units, on a nonequal area
projection

✓ ✓ - -

Degrees of latitude and
longitudea

- - - -

Sphere – projected to the plane ? ? ? ?

✓Feasible to create bins with this property, but preservation is not guar-
anteed. Magnitude of deviation depends on projection, location, and
spatial extent of bins (e.g. Figure 1 for a nonequal area projection
example).

-Not feasible to create regular bins with this property at global scale.
Regular bins on a nonequal area projection will not be regular shape
or size across the sphere.

?Feasible to maintain some of these properties, but it depends on the
method of subdivision of the sphere, projection to the plane, bin shape,
and area covered (e.g. see White et al. 1998; Carr et al. 1997). Regardless
of the subdivision method, translation to mapped space will always
introduce distortion of area and or angular measurements.

aHowever, if created and used on a plate carrée projection, the bins will be
same size and shape on the plane; any other projection will present
differing sizes and shape of bin (see Figure 6).
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latitude considered equivalent. The problem here is
that the length of one degree of longitude is not con-
stant across latitudes; it varies from ~112 km at the
equator to 0 km at the poles. When the bins are then
projected into Web Mercator coordinates, significant
distortion to bin shape and size may be introduced,
with severity of the distortion dependent on latitude.
This method of defining hexagonal bins introduces
even more significant errors than the regular planar
grid discussed above because the projected bin size
becomes larger and larger as the absolute latitude
increases, while the ground area covered by the bin
becomes smaller and smaller (Figure 6). The bins are
regular in neither spherical space nor mapped space.

2.5.3. Defining spherical bins and projecting to
plane
A third method of generating regular spatial bins is to
define them on the sphere and then project to the plane.
There are many ways to partition the surface of the
globe to generate grid systems. Specifically, with respect
to tessellations used for sampling frameworks (or spatial
binning) that consist of equal area and shape units,
White et al. (1998) explore troubles that arise with
methods of recursively partitioning the globe. They con-
sidered three methods of defining spatial bins: (1) planar
partitioning that were then projected back to the sphere
(using gnomonic, Fuller Dymaxion, and Snyder equal
area polyhedral projections), (2) spherical subdivision of
an icosahedron inscribed in the sphere, and (3) polyhe-
dral partitioning with the mapping between plane and
sphere changing at each level of recursion. Of all of these
methods, only the Snyder equal area projection main-
tained equal area across all subdivisions, though shapes
were not preserved. The Fuller projection and direct
spherical subdivision provided the best balance in dis-
tortion between area and shape. Sahr, White, and
Kimerling (2003) continued work with the Snyder
equal area projection-based partitioning and constructed
a geodesic discrete global grid system called the ISEA3H
that can be used for binning. However, while these bins
are equal area on the sphere, when projected onto a
plane, they will be warped in the transformation and
likely will not still present a pattern of regular shape and
size bin (Figure 2). While the ISEA3H has been directly
discussed in the literature, any equal-area projection
yields bins of equal size on both sphere and plane;
common examples are Eckert IV (terrestrial) and
Mollweide (astrophysics and oceanography). Shape, on
the other hand, varies across the map.

Figure 5. A spatially uniform distribution of one million random data points as binned into even-sized regions in Web Mercator
planar coordinates, shown with color (left) and color/size encoding (right) to emphasize the relative change in density. The ground
area covered in the high absolute latitudes is much smaller than the area covered by the same size bin near the equator, leading to
an appearance of lower density nearer the poles.

Figure 6. Hexagonal bins defined as 10° side on a plate carrée
projection, and projected onto a Web Mercator base map.
Measurements listed provide relative map area and ground area.
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2.5.4. Interpreting meaning from the symbolized
bins
In addition to the challenges of creating bins appro-
priate for the needs of the map, the mapmaker must
also consider how symbolization affects the interpret-
ability of the measure assigned to each bin. In a way,
this may present a “benefit” from the errors inherent in
spatial binning: Any inaccuracy in raw quantity or
density measure may be hidden, or dampened, within
a range of values in a classed data set or behind the just
noticeable difference of shade in an unclassed data set.
This is not to recommend classification of data and
reporting of data range as a solution for bad spatial
binning, only to observe that other factors also impact
a map reader’s ability to interpret the patterns pre-
sented in the spatial bins. Above all, we believe the
mapmaker should focus on the accuracy of the raw
data while keeping in mind how classification and
symbolization affect interpretation.

3. Calculating “safe zones” to bin in projected
space

To use spatial bins in planar, projected space, the map-
maker needs to identify the “safe zone” for which the
error from binning does not exceed some defined tol-
erance. As Web Mercator is a common projection for
online maps, we show how to calculate the safe zone
for this projection and then discuss how one could
determine the safe zone in other projections.

The Web Mercator has uniform scale along paral-
lels. To create bins without violating some acceptable
limit of error, the map designer should designate a
standard parallel (a latitude) of interest and then com-
pute the north–south zone around it that does not
exceed the acceptable error. The idea is that the stan-
dard parallel is the reference scale. It has no “distor-
tion.” Viewing any particular latitude this way is
permissible on a conformal (or practically conformal)
map like the Web Mercator because sizes are relative
and shapes have no local, absolute distortion such as
on non-conformal projections. There is only inflation
or deflation of scale (which we refer to generically as
“flation”) from whatever is designated as the standard.
Considered this way, the nominal scale of the map is
defined by the standard parallel’s scale rather than by
the equator’s scale.

The safe zone around the standard parallel is char-
acterized by a maximum tolerable flation that is pre-
sumably close to 1.0, where 1.0 represents the standard
parallel’s scale factor. Flation is greater than 1.0 in the
direction of increasing scale on the map and less than
1.0 in the direction of decreasing scale. To allow 5%
error away from the standard parallel, for example,
flation would be 1.05 in the direction of the nearest
pole and 1/1.05 = 0.9525 in the direction of the equa-
tor. We select 5% as the example error value as it is in
line with the 0.06 Weber Fraction for just noticeable
difference in visual area (Baird and Noma 1978); how-
ever, the reader has freedom to select an error value in
line with the quality needs for their data.

Given an allowable flation k and the standard par-
allel φ₁, then the maximum difference (δ) in latitude
that does not exceed the permissible flation k is found
as follows:

sin δ ¼ k�1 cosφ1½
pðk2 � cos2φ1Þ � sinφ1�

¼ ðp½k2sec2φ1 � 1� � tanφ1Þ=ðksec2φ1Þ:
(1)

To find the upper and lower boundaries of the zone,
k would take both the upper and the lower desired
flation values. These formulae are derived from the
trigonometric identities that express the secant of the
sum of two angles (φ₁ and δ), setting that equal to k,
and solving for δ. The secant of latitude represents the
flation on a Mercator map considering the equator
as 1.0.

To find the relative flation k at δ° from φ₁:

k ¼ cos ðφ1Þ= cosðφ1 þ δÞ: (2)

This follows directly from the calculation of flation
value on the Mercator. Note that this expression is only
applicable on one side of the equator at a time. When
spanning the equator, the equator itself is φ₁, and
whichever parallel φmax is furthest from the equator is
δ, reducing the formula to

k ¼ secðφmaxÞ: (3)

Table 2 shows a series of safe zones on Web
Mercator given an upper k of 1.05 and a lower k of
1/1.05 = 0.9525, with standard parallel for each. This
table is intended as an illustration, not as a prescrip-
tion, since a responsibly exploited zone depends on the
area of interest, not this arbitrary subdivision into
bands of latitude. As expected, the usable bands narrow
dramatically with latitude, starting at 35.5° at the

Table 2. Example series of “safe zones” on Web Mercator with an assumed flation tolerance of 5%.
Low φ –17.75° 17.75° 30.25° 38.42° 44.71° 49.86° 54.22° 57.97° 61.25° 64.13° 66.69°

φ₁ 0° 24.90° 34.64° 41.74° 47.40° 52.13° 56.16° 59.66° 62.73° 65.45° 67.86°
High φ 17.75° 30.25° 38.42° 44.71° 49.86° 54.22° 57.97° 61.25° 64.13° 66.69° 68.96°
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equator but shrinking to a mere 2.3° at the Arctic
Circle. Also as expected, the half of the band closer to
the equator from a given φ₁ is wider than the half of
the band away from the equator.

While we demonstrate for the Web Mercator, simi-
lar concepts apply to any projection, albeit complicated
by whatever vagaries of distortion the projection might
have beyond simple latitudinal zones. For equal-area
projections, the question is not “Where do things get
too big or small,” but, “Where do my polygons start
looking too skewed from angular deformation?” For
compromise projections, both considerations come
into play, where one would impose limits for both
flation and angular deformation.

4. Conclusions and further work

As pointed out by O’Sullivan (2015) in a recent book
review, “. . .Addressing aggregation effects in spatial
data remains a relatively unexplored area.” In this
work, we have addressed one component of these
effects, that is, spatial binning, which presents hazards
for creating bins that are both accurate and easily under-
stood by the map reader. We have discussed many
aspects of spatial binning including how to assess
whether binning is even a good choice, as well as obser-
vations about problems caused by map projection dis-
tortion, and how to mitigate these problems. Part of
assessing whether or not regular spatial bins are a
good way to visualize a data set depends on what pro-
jection is used and how it is used, so we have introduced
the notion of a “safe zone” in which the distortion from
the map projection is minimal enough to avoid com-
promising information integrity. Though we have
focused on examining, and helping mapmakers under-
stand, the problems map projections bring into spatial
binning, there remain many related topics ripe for
research that should be considered more deeply when
using spatial bins to aggregate data.

We have not discussed some relevant, important
geographic and cartographic concerns that are already
well known and well documented in the literature. We
mention them only briefly here to remind the map-
maker that these concerns should inform analysis and
design decisions and to introduce interesting future
research questions.

For one, any map using spatial binning is affected by
the modifiable areal unit problem (MAUP) (Openshaw
and Taylor 1979). The MAUP is a result of aggregating
point data into polygonal bins, whose boundaries arti-
ficially partition the data and thereby affect the calcu-
lated summaries. Implications of the MAUP have been
widely discussed in the literature (e.g. Fotheringham

and Wong 1991; Grasland and Madelin 2006; and
many others), so we do not go into detail here, but
simply remind the reader that analytical values and
visual patterns resulting from the aggregation vary
depending on the size, shape, and placement of the
bins. While the problem is unavoidable, it is not ignor-
able. The effect is particularly pertinent when the goal
is to compare patterns across multiple maps employing
the binning technique: If the bins used in both maps
are not the exact same size and placement, the patterns
will not be directly comparable. We have found that
not all tools for creating bins allow for easy and explicit
definition of the bin size and origin location.

The MAUP in binned data suggests that raw counts
may not be the best way of partitioning data between
bins. We see potential for techniques analogous to anti-
aliasing from the signal processing domain. Aliasing hap-
pens when a continuous signal is quantized into regular
measurements of intensity, such as digital sampling of an
audio signal. The loss of detailed structure within each
sample, combined with the edge of the bin, means that
the original signal cannot be perfectly reconstructed, that
different sampling frequencies yield different reconstruc-
tions, and that the signal artificially contains very high
frequencies as implied by the stair step of the sample
boundary. These problems apply to any quantization of
a continuous signal, such as images, where a scene is
binned into pixels. Simple binning through sampling
light intensity at the center of each pixel of a sensor yields
speckling and pixelation because adjacent pixels differ too
much, and the problem rapidly exacerbates when the
image undergoes other processing, such as scaling
(Rosenfeld and Kak 1982). Antialiasing counters these
problems through the use of any of a number of techni-
ques. The analogy to spatial binning is obvious, where the
contribution of a data point to a bin would not be all-or-
nothing, but rather weighted depending upon distance
from the center of the bin and including contributions
from surrounding bins. This would prevent apparent
patterns from changing as bin partitions change. There
is extensive literature in sampling theory (e.g. Berry 1962;
Berry and Baker 1968; Lounsbury, Sommers, and Fernald
1981; Anselin 1988; Maling 1988) that could inform
improvements to spatial binning.

There is also ample room for research on the cognition
of reading spatial bins. While we have pointed out possible
pitfalls in apprehending spatial binning in a projected
world, we have only assumed that mapmakers and map
readers equate count and density measures. Perhaps, this is
our own cognitive bias, but considering previous research
suggesting that map readers struggle to identify and incor-
porate projection distortion in interpreting maps (e.g.
Anderson and Leinhardt 2002; Battersby 2009), we suspect
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map readers have trouble distinguishing the planar area
(appearance of the bins) from the spherical areas they
represent, which will lead to serious misinterpretation of
spatial patterns.We also note that the purpose of binning is
precisely to present constant shape and size in order to
remove those variables in the mark so that the reader can
focus on the measure the mark provides. Therefore, when
the size and shape do not mean what they apparently
mean, the binning technique’s raison d’être is defeated.
Along this line of research, we need to understand how
individuals interpret patterns within regular bins that do
not represent constant spherical area, and with irregular
bins that do represent constant spherical area, but are
distorted in the planar map view.
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