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ABSTRACT 
 

Recent (2007) developments in automated integration of vector geospatial data with image data combine techniques 
for extracting point features from image data with algorithms that match point features between data layers. The 
precision and accuracy of an image-extracted point feature depend on various factors related to the feature 
extraction technique and to the quality of the image in the area of extraction. Furthermore, the precision and 
accuracy of image-extracted points affect the reliability of the subsequent process for matching points between 
layers, and consequently, the overall adequacy of the data integration approach. Several approaches for detecting 
and removing improperly matched points are available. The USGS is investigating the use of a weighted affine 
transformation to filter point matches during automated integration of vector roads with images. The transformation 
is applied to a local area of match points to detect probable blunders and remove them from the rubber-sheeting 
algorithm.  Aside from blunder detection capabilities, advantages of this approach include the ability to weight 
control coordinates relative to estimated precisions of extracted point features, and the ability to estimate the 
precision of the integrated vector layer through error propagation. 

 
 

INTRODUCTION 
 

During recent years, the U.S. Geological Survey (USGS) has been remodeling the way it provides geospatial 
data to the nation through The National Map program (USGS, 2006). The vision of The National Map is to ensure 
that “current, complete, consistent, and accurate” geographic base information is readily available through a system 
of web-based interfaces (USGS, 2006). To the extent possible, geospatial data will be aligned to its true geographic 
position, thereby eliminating any cartographic offsets inherent with some source products. The National Map data 
will be derived from various sources by a consortium of data stewards. As explained by Usery and others (2005), 
one primary complexity of this vision is the “integration of the various resolutions and accuracies of data in both 
horizontal and vertical directions,” which is “one of massive proportion” when considering national 
implementation.  

In 2004, USGS scientists in Rolla, Missouri, began research to address the data integration issue for The 
National Map. Thus far, the research agenda has included empirical exploratory analysis to qualitatively and 
quantitatively assess the extent of the data integration problem, development of a hypothesis for data integration 
based on resolution and accuracy, and development and testing of automated systems and algorithms to shift 
features from one dataset into alignment with another to achieve integration (Finn and others, 2004; Usery and 
others, 2005).  

Through a cooperative agreement with the University of Southern California (USC), a system for integrating 
vector roads with orthoimage data that was developed at USC (Chen and others, 2003a, 2003b) has been emulated 
and evaluated by USGS researchers (Usery and others, 2005). The system applies automated algorithms that 
identify road intersection points on orthoimages that match intersection points on a vector road layer. Matching 



points are filtered to eliminate undesired pairs.  Subsequently, a piecewise linear transformation (Saalfeld, 1985; 
White and Griffin, 1985; Saalfeld, 1993) is applied to fit the vector roads to the image data. 

Currently (2007), the best approach identified by the USGS for filtering undesired matching pairs applies a 
vector median filter that eliminates 50 percent of the matching pairs (Usery and others, 2005). In this paper, we 
hope to take advantage of earlier work (Krarup and others, 1980; Stanislawski and others, 1996; Alsabti and others, 
1998; Stanislawski, 2000) and implement a more rigorous statistical filtering technique by identifying possible 
outlying observations, or blunders, within localized subsets of the project area. We propose and test the use of the k-
means clustering technique to define localized subsets of matching point pairs. The objective is to assess an 
alternative filtering strategy that implements a series of weighted transformations to identify and remove suspected 
blunders from localized areas. 

 
 

METHODS 
 

Test Data 
 
In this preliminary analysis, test data were limited to the same sources used for the original study (Usery and 

others, 2005). Small subsets (about 1 kilometer x 1 kilometer) of image data and associated vector roads were used 
to develop and test the new filtering technique. The subsets are in urban areas around St. Louis, Missouri. The 
image source is color orthophotography with approximate 0.33-meter (1-foot) resolution, which was collected for 
the 133 priority cities of the Homeland Security Infrastructure Program (Vernon, 2004). Vector road data overlaying 
the images were extracted from the Missouri Department of Transportation (MODOT) layer, which provides one of 
the most accurate sources for this area.  

A sample of the image and vector road layers is shown in figure 1. Notice that in most areas the vector roads 
are within about one or two road widths of the image roads. From visual inspection, it appears nearly all vector road 
intersections are within about 50 meters of corresponding image intersections, and the majority are within about 10 
meters. A more thorough quantitative summary of preprocessed vector-to-image discrepancies is provided later. 

 
 

 
Figure 1. MODOT transportation (yellow) overlaid on an orthographic image. 
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Processing Steps 
 
In this research, the process to integrate a section of a vector road layer to an associated image is not intended 

to register one layer’s coordinate system to the other. Input layers should already be registered to the same 
geographic coordinate system and geometrically integrated to a certain extent. This work quantifies the required 
level of prior integration between the two datasets and the level of improved geometric alignment that is achieved 
by this process. The steps involved in the process to integrate a section of a vector road layer to an associated 
orthoimage are as follow:  

1. Classify image pixels as road or non-road based on hue, saturation, and value. 
2. Locate road intersection points in the vector data. 
3. Buffer vector intersection points and create a vector image template (VIT) of road segments 

within each point buffer that reflects road widths as defined by the vector feature type or 
associated attributes (figure 2). 

4. For each VIT, find the image pattern within a local area of the classified image that best matches 
the VIT. Store matching image pattern centroid coordinates and the associated vector intersection 
coordinates. 

5. Using the k-means approach, cluster image match points into groups that are larger than 30 and 
less than or equal to 40. 

6. Check if any blunders are detected in each cluster by using the weighted affine transformation to 
fit the vector intersection points to the matching image points. 

7. If any blunders are detected, remove them from the set of match points and repeat steps 5 and 6 
until no blunders are detected in any cluster. 

8. Perform rubber-sheeting transformation to correct vector roads (Saalfeld, 1985). 
 

 

 
Figure 2. Sample vector image template (VIT) generation showing section of roads within intersection buffer, road 

segments buffered by road width, and template in original vector position overlaid on orthoimage. 
 
 
All the steps, except step six, have been automated through C programs. The weighted affine transformation is 

coded in Pascal. ERDAS Imagine software was used to generate training sets for the road and non-road image 
classes, which are entered into the Bayesian classifier of step one. Pattern matching in step four is completed 
through a raster-to-raster correlation computation by moving a window of a user-specified size over a user-specified 
distance. Window size and search distance depend on image characteristics and how well the datasets are integrated 
before processing. Limitations for these values are yet to be determined. However, we have had good match results 
for our test data using a 50 meter by 50 meter window within a 70 meter by 70 meter search area around the vector 
point. For additional details see Usery and others (2005).   
 

K-means 
 
Clustering is any automated process of classifying data into groups, and it is a common technique in 

exploratory data analysis (Jain and others, 1999). The k-means clustering approach has been effectively 
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implemented in various practical applications (Alsabti and others, 1998). In our integration process, we would like 
to detect and eliminate any matching point pair that does not conform to an affine fit for a local area; therefore, the 
k-means clustering algorithm is used to identify localized groups of matching point pairs that are subsequently 
tested for blunders through the weighted affine transformation. Earlier research suggests that the weighted affine 
model requires at least 12 points to detect blunder observations (Stanislawski, 2000). Thus, we initially required 
clusters between 30 and 40 points, with multiple use of some points in adjacent clusters to achieve the minimum 
size criteria. 

Although the k-means algorithm can cluster by proximity in n-dimensions, our implementation groups points 
by proximity in two-dimensional space. K-means does not limit the size of the cluster, so some post processing must 
be performed to achieve desired results. The steps of our k-means clustering algorithm follow: 

 
1. Calculate approximate number of clusters by dividing the number of points by the maximum 

number of points in a cluster. 
2. Assign each point to a random cluster. 
3. Calculate centroid of each cluster. 
4. Assign the nearest point in a cluster as the cluster centroid. 
5. Aside from the cluster centroids, assign each point to its nearest centroid. 
6. Recompute each cluster centroid. 
7. Repeat steps 4-6 until the centroids stop moving based on Euclidean distance, or until a maximum 

number of iterations is reached (10 times the number of points in the dataset). 
8. Divide clusters that are too large into smaller clusters using steps 1 through 7. 
9. If any cluster is too small, add nearest points until minimum cluster size is achieved. 
 

To decrease the number of iterations required for clustering, our variation of the k-means algorithm forces each 
cluster centroid to be a data point.  

 
Weighted Affine Transformation 
 
During step 6 of the integration process (the weighted affine transformation step), coordinates of the 

intersection points on the vector, or “target” layer, are modeled to fit the matching intersection points on the image, 
or “control” layer, through a general least squares adjustment.  This process is repeated for each cluster of matching 
point pairs. The general least squares adjustment incorporates weights for control and target coordinates, and 
minimizes the sum of squares of the weighted residuals (Mikhail and Gracie, 1981).  Weights are computed from 
coordinate variance estimates. Before adjustment, variance estimates for control coordinates are estimated as the 
width of one or two pixels, but this is subject to further testing. A priori (initial) variance estimates for target 
coordinates should be larger than control variances, which are approximated as ten times the variances of control 
coordinates.  During adjustment, initial target coordinate variances are modified using the Danish method to remove 
associated effects of suspected outlying observations (Krarup and others, 1980).  A posteriori (adjusted) target 
coordinate variances are computed as the outlier-corrected variances multiplied by the variance of unit weight after 
convergence (Stanislawski, 2000). 

The method being used to modify the weights of suspected outlying observations was developed by the 
Geodetic Institute of Denmark and is "especially designed to eliminate gross errors" (Krarup and others, 1980). The 
diagonal element of the weight matrix for outlying data layer coordinates will be modified as follows: 

)rf(w = w ii1+i  

where wi represents a diagonal element of the weight matrix for the ith iteration, and  

orc < w|r| if   1 = f(r) ,
σ̂
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where r is the residual of the observation, w is the corresponding diagonal element of the weight matrix, c is a 
constant usually set to 3, and σ̂  is the a posteriori estimate of the reference standard deviation (Kubik and others, 
1986). This process iteratively increases the variance of a coordinate observation if the ratio of the product of the 
observation’s residual and the square root of its weight to the standard deviation of unit weight is larger than the 
constant. Modification of the variance of a point’s coordinate effectively flags it as a blunder, which results in 
filtering the associated pair as unacceptable for use in the subsequent rubber-sheeting transformation. 
  

STATUS 
 

As of February 2007, all component programs have been written or acquired from previous researchers, and a 
sample dataset from previous studies has been acquired. We currently are testing the programs with sample data 
from the St. Louis area. The sample MODOT vector road data has about 100 road intersection points that are 
possible candidates for image pattern matching. Upon automatically selecting a set of matching road intersection 
pairs via the pattern matching program (step 4 of processing steps), we will filter these points through the vector 
median filter and the LAT filter and compare results. Subsequently, we will refine the LAT filter process, or 
complete the rubber-sheeting transformations using the two sets of filtered points and compare results. If the LAT 
filter process provides improved rubber-sheet results, we will test the process on a larger area. 

Upon completing several tests with the localized affine transformation (LAT) filter, we hope to answer the 
following questions regarding the tested datasets: 

 
1. Does the LAT approach actually filter any points? 
2. If the LAT approach filters any points, does it filter different points than those removed with the 

vector median filter? Also, are these data integrated better using the LAT filter based on 
Euclidean distance rather than using the vector median filter? 

3. Does the LAT filter take substantially more time than the vector median filter? 
4. Can additional information regarding the accuracy of the integration process be derived from the 

LAT models through error propagation? 
5. What are the limitations of the LAT filter approach? How close must the datasets be integrated 

before implementation? What is the minimum number of points required for the process to be 
successful? Can the integration system be implemented in rural areas? 
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