
pRasterBlaster: Fast, Accurate Raster Reprojection
David Mattli, Michael P. Finn, Michael
Stramel

Step 1: Calculate and Partition
Output Space
Each map projection represents a distinct coordinate system
• The area of the output raster dataset must be calculated by finding a minbox.
• The edge of the input raster dataset is iterated over translating input coordinates to output
• The smallest box that contains all of the calculated output coordinates is the minbox
• The calculated output minbox is then partitioned into areas to be assigned to processors
• Each output partition is matched with a partition in the input raster dataset
• This partition pair, input and output, is a single task for a processor

This raster dataset is the same as the above but in Mollweide projection. The red areas are those
outside of the projected space. These areas have important performance consequences, see
“Load Balancing” under Problems Encountered.

Performance
The performance of a parallel program is very dependent on the number of processors and communication
overhead. Below is a chart showing performance for a typical raster dataset with the current implementation.
Performance levels out mainly because of the increased overhead from copying the temporary output files.

http://cegis.usgs.gov

2012-08-02

Problems Encountered

● Parallel File I/O
● Raster dataset reprojection is an I/O intensive problem and file system I/O in

parallel cluster environments is an area of active research. The current
implementation is correct but slow. The use of parallel I/O routines from MPI-IO
could potentially provide better performance.

● The original implementation of pRasterBlaster used a naive parallel I/O
strategy. Each process wrote to an exclusive portion of a shared file.

● Load Balancing
● pRasterBlaster detects areas of the raster dataset that are outside of the input

coordinate space. These areas are represented in red in the Output Raster
Dataset. pRasterBlaster detects these areas and avoids reprojection and
resampling. As a result these areas are processed very quickly. With the
current partitioning scheme a processor may receive partitions that are almost
complete made up of this outside area. Those processors complete very
quickly where others may take much longer.

● Dynamic Partitioning
● The algorithm pRasterBlaster uses to reproject raster datasets presents an

unusual problem for partitioning. After the output space is partitioned, each
partition is matched with its equivalent input area. The size of the output
partition is easily controlled but the matching input area is dependent on a
number of factors: output projection, projection parameters, and scaling.

● If the matching input area is too large it may not fit into the memory assigned
to the processor. As a result smaller partition must be found.

● File I/O on Shared Clusters
● Because pRasterBlaster intensively uses the filesystem, running multiple

instances simultaneously results in lower performance versus running one job
at a time. Shared the limited I/O resources of large shared clusters is an area
that needs further investigation.

red

Output Space Partitioning
The picture above depicts an example output coordinate space overlayed with a grid
representing the partitions. Early implementations used groups of rows as the partitions but
now partitions can be arbitrary rectangular areas.

The magenta rectangle from the output raster coordinate space and the rhombus from the in put
raster dataset represent the same area. Each area would be loaded into memory.

References
Finn, M.P., and Mattli, D.M., 2012, User’s guide for mapIMG 3—Map image re-projection software package: U.S. Geological
Survey Open-File Report 2011–1306, 12 p.

As part of its "Multi Resolution Raster" project the Center
of Excellence for Geospatial Information Science (CEGIS)
has researched fast and accurate reprojection of raster data
for the USGS National Map. An early result of these efforts
was the mapIMG software package. The mapIMG package
implements reprojection of global raster datasets and solved
several problems present in commercial offerings of the
time. It also implemented several new categorical
resampling techniques.

pRasterBlaster is a new implementation of mapIMG's
reprojection techniques designed to run on multicore,
parallel computers. It includes the sophisticated resampling
techniques along with a new parallel reprojection
implementation. pRasterBlaster uses multiple processors to
quickly reproject large raster datasets.

Output Raster Coordinate Space

Input Raster Dataset

Step 2: Read Input and Reproject
Each processor is assigned a quantity of input/output partition pairs
• Memory is allocated to hold the output and input partitions.
• The input partition is read from the filesystem.
• For each pixel in the output, the equivalent pixels in the input are used to find the

resampled value
• Once the resampling is complete, write the output raster to a per-processor temporary

file

Step 3: Combine Temporary Files
Each processor writes its output to a exclusive temporary file
• After all of the processors finish their partitions, they each take turns copying their

temporary file contents to the final output file

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
0

500

1000

1500

2000

2500

3000

3500

4000

pRasterBlaster Runtime

time

processors

R
u

n
tim

e
 -

 s
e

co
n

d
s

Output Raster Dataset

	Slide 1

