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EFFECTS OF SAMPLING INTERVAL ON SPATIAL ANALYSIS OF WATERSHED
 
NITROGEN LOADING1
 

Shuo-sheng Wu, E. Lynn Usery, and Michael P. Finn (U.S. Geological Survey, Rolla, MO, USA) 

ABSTRACT: The purpose of this study is to investigate how spatial patterns and statistics of watershed 
nitrogen concentration change with sampling interval. The Little River watershed, Georgia, USA, is used 
as a case area. Point samples at 30-m to 600-m intervals at 30-m lag are taken, respectively, from a 30-m
resolution nitrogen surface that was generated previously with the Agricultural Non-Point Source 
(AGNPS) pollution model. Basic statistics, variograms, interpolation accuracies, clustering levels, and hot 
spots are calculated from the samples, and their changes with sampling interval are examined. The results 
show that the mean, standard deviation, and variogram sills do not have increasing or decreasing trends 
with increasing sampling intervals while the variogram ranges remain constant. In contrast, the 
interpolation accuracy, clustering level, and hot spot areas display decreasing trends that approximately 
follow a power law curve and correspond to the variogram of 30-m-resolution nitrogen. The sampling 
interval of 360 m appears to be a critical point at which the trends start to level. The trends with sampling 
interval help researchers and practioners who study watershed pollution to determine appropriate 
sampling intervals, and the clustering and hot spot analyses are useful for watershed pollution 
management and resources planning. 

INTRODUCTION 
Researchers often need regular samples of environmental variables to model natural processes 

(Morris, 1999; Tian et al., 2002; Litaor et al., 2002) or as a preliminary effort for optimizing a subsequent 
sampling scheme (van Groenigen et al., 1997; Simbahan and Dobermann, 2006). Determining appropriate 
sampling intervals is important because analyses based on different sampling intervals may produce 
different results. Past studies have explored the effect of sampling interval on the accuracy of digital 
elevation models (e.g., Li, 1992; Gong et al., 2000; Aguilar et al., 2005; Chaplot et al., 2006), on 
interpolation accuracy of various soil variables (e.g., Oliver and Frogbrook, 1998; Bourennane and King, 
2000; Frogbrook and Oliver, 2000), on spatial patterns and statistics of soil properties (e.g., Western and 
Blöschl, 1999; Oline and Grant, 2002; Sobieraj et al., 2004; Iqbal et al., 2005), on the estimation of home-
range size (e.g., Swihart and Slade, 1985), and on the result of trail impact assessment (e.g., Leung and 
Marion, 1999). This study investigates how sampling intervals affect the spatial patterns and statistics of 
watershed nitrogen loading, with the goal to provide guidance for future sampling efforts. Our approach is 
to systematically take samples at incremental intervals from an AGNPS-generated watershed nitrogen 
surface to conduct analyses. Using model-simulated data allows us to efficiently test different sampling 
intervals and to examine the effects. Furthermore, this study intends to investigate the effect of sampling 
interval on clustering and hotspot analyses of watershed nitrogen loading. Clustering analysis helps 
determine whether the overall level of nitrogen concentration in a watershed is statistically significant. 
Hotspot analysis allows one to locate statistically significant high-value clusters (hot spots). These 
analyses are of importance to watershed pollution management and resources planning. Sampling interval 
effects on the analysis results is therefore of great concern to researchers and practioners of watershed 
management.  

The next section of the paper (MATERIALS AND METHODS) presents the study area, datasets, 
and analysis methods in detail. Then the RESULTS section describes results of the analyses of basic 
statistics, variograms, interpolation accuracies, clustering levels, and hot spots. The DISCUSSION 

1 Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by 

the U.S. Government. 
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section discusses important findings and critical issues of the analyses. Lastly, the CONCLUSIONS 
section concludes with a summary of the study with emphasis on the major findings. 

MATERIALS AND METHODS 
Our study area is the Little River 

watershed, Georgia, USA, approximately 12 km in 
width and 35 km in length (FIGURE 1). In a 
previous study of resolution effects on watershed 
modeling, a soluble nitrogen concentration surface 
of 30-m resolution was simulated using the 
Agricultural Non-Point Source (AGNPS) 
pollution model (Young et al., 1994, 1995), based 
on a hypothetical precipitation event and 22 input parameters derived from soil, land cover, and elevation 
data (Usery et al., 2004). In this study, to investigate the effect of sampling interval, we first selected 
point samples at 60-m, 90-m, …, to 600-m intervals, respectively, from the simulated nitrogen surface. 
We then calculated the mean, standard deviation, variogram, interpolation accuracy, clustering level, and 
hot spots based on the samples. How theses statistics change with sampling interval were examined. 

We used the natural neighbor algorithm for interpolation because it is a simple and robust 
algorithm that is sufficient to meet our need considering the relatively dense sampling scheme 
(Boissonnat and Cazals, 2001). We interpolated nitrogen surfaces of 30-m resolution from the point 
samples and then compared the interpolated surfaces with the original 30-m nitrogen surface. The root 
mean square error (RMSE) and the total absolute error (TAE) were calculated. 

We calculated the Z score of the global Moran’s index to represent the overall clustering level, 
and the Z score of the local Getis-Ord statistic (by cells) to derive hot spots of nitrogen concentrations. 
Hot spots of Z scores of 1.96 and above, which indicate a 95% confidence interval, are chosen to compare 
between different sampling intervals. We calculated the clustering and hot spot statistics based on a 
specified neighborhood distance of 900 m, because this distance is approximately the variogram range 
(see the RESULTS section) and indicates the limit of spatial interaction. 

RESULTS 
The results show that the mean and the standard deviation of nitrogen concentration do not have a 
consistent trend with increasing sampling intervals (FIGURE 2 and FIGURE 3). The variogram sill does 
not consistently increase or decrease while the variogram range remains unchanged (approximately 900 
m) with increasing sampling intervals (FIGURE 4 and FIGURE 5). The interpolation errors display an 
increasing trend with increasing sampling interval (FIGURE 6 to FIGURE 8). The overall clustering level 
and the total hot spot area have a decreasing trend with increasing sampling intervals (FIGURE 9 to 
FIGURE 11).  

FIGURE 1. Little River watershed, Georgia, USA
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FIGURE 2. The trend of the nitrogen mean with FIGURE 3. The trend of the nitrogen standard 
sampling interval deviation with sampling interval 
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FIGURE 4. The change of variograms with sampling FIGURE 5. The variogram of the 30-m 
interval nitrogen concentration 

FIGURE 6. Original and interpolated 30-m nitrogen surfaces based on different sampling intervals 
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FIGURE 7. The trend of the root mean square FIGURE 8. The trend of the total absolute
 
error (RMSE) with sampling interval error (TAE) with sampling interval
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FIGURE 9. The trend of clustering levels with 
sampling interval 

FIGURE 10. The trend of total hot spot areas 
with sampling interval 

FIGURE 10. Hot spot patterns of 30-m nitrogen and based on different sampling intervals
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DISCUSSION
 
The trends of sample mean and sample standard deviation indicate that estimates from higher 

sampling densities may not necessarily be more accurate (FIGURE 2 and FIGURE 3). Nevertheless, the 
trends appear to fluctuate more at larger sampling intervals and, therefore, estimates from smaller 
sampling intervals may be more robust and reliable. 

The comparison of variograms between different sampling intervals demonstrates that sampling 
intervals do not affect the observed variogram range (FIGURE 4). Nonetheless, the smallest lag available 
for computing the semivariance in a variogram is the respective sampling interval and, therefore, large 
sampling intervals may not allow one to construct a representative variogram when the variogram range is 
relatively small. Furthermore, smaller sampling intervals can produce larger numbers of samples, which 
generally yield more reliable estimates of the semivariance. 

The interpolation error, clustering level, and hot spot areas appear to have similar trends of a 
power law curve with increasing sampling intervals. The trends also correspond to the variogram of the 
30-m nitrogen at equivalent lag distances (FIGURE 5). A sampling interval of 360 m appears to be a 
critical point at which the trends start to level. The implication is that analyses based on a sampling 
interval of 360 m will be similar to those based on large sampling intervals (e.g., 600 m) and, therefore, 
one may prefer using large sampling intervals for cost effectiveness. 

CONCLUSIONS 
This study investigates how spatial patterns and statistics of the nitrogen loading in the Little 

River watershed change with sampling interval, by taking incremental samples at 60-m to 600-m intervals 
with a 30-m lag from a AGNPS-simulated, 30-m-resolution nitrogen surface. The results show that the 
mean and standard deviation do not change consistently with sampling interval while the estimates are 
more robust and reliable at small sampling intervals. Variogram sills do not have consistent trends with 
changing sampling interval while the variogram ranges remain approximately the same. Small sampling 
intervals are necessary for constructing representative and reliable variograms at small lags. The 
interpolation accuracy, clustering level, and hot spot areas have corresponding trends with the 30-m
resolution variogram. A sampling interval of 360 m is a critical point at which the trends start to level and 
the analysis results become similar. The trends of analysis results with different sampling intervals help 
researchers and practioners who need to take field samples for studying watershed pollution to choose 
appropriate sampling intervals for optimizing cost benefits. Moreover, the clustering and hot spots 
analyses presented in this study are of great value for watershed pollution management and resources 
planning. 
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RETROSPECTIVE INVESTIGATION OF CHRONIC OIL POLLUTION IN THE SOUTHERN
 
NORTH SEA
 

Alena Chrastansky (GKSS Research Center, Geesthacht, Germany) 

Oil from several sources enters the North Sea on a daily basis. While oil spills resulting from ship 
accidents attract much public interest, less dramatic, ongoing sources of pollution receive much less 
attention. However, major sources of oil pollution in the marine environment are caused by discharges 
that occur during normal shipping operations, as well as by illegal oil discharges such as tank washing or 
the disposal of bilge water. These forms of pollution often go undetected and increases in marine traffic 
have resulted in increases in marine pollution. Efforts have been made to regulate and reduce such 
sources but their success has been difficult to estimate, especially when concerning illegal oil dumping. 

The study addresses the estimation of the inshore consequences of chronic oil pollution along shipping 
routes in the southern part of the North Sea over the period 1958 to 2005, taking into account the political 
regulations and constraints. To assess the amount of chronic oil pollution, marine traffic statistics from 
four major European container ports, namely Rotterdam, Hamburg, Antwerp and Bremen, and oil spill 
statistics from the German Havariekommando and Bonn Agreement, are used. With the aid of a transport 
model developed at GKSS, and reconstructions of wind and wave conditions, the drift of spills are 
estimated, demonstrating the effects for coastal areas. As a result of weakness in the data (missing and 
sparse data, lack of measures concerning illegal discharge, etc.) several scenarios are employed. These 
results are then compared to case studies of oil contaminated, beached birds, typically the victims of 
marine oil spills. By identifying the source regions of oil pollution, optimal measures can then be 
employed to defend the environment. 
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